028-8525-3068
新闻动态 News
News 公司新闻
文献解读原名:The soil microbiome governs the response of microbial respiration to warming across the globe译名:土壤微生物群落主导了微生物呼吸对全球变暖的响应期刊:Nature Climate Change IF:30.7发布时间:2023.12第一作者:Tadeo Sáez-Sandino01摘要土壤微生物呼吸对变暖的敏感性(Q10)仍然是预测土壤向大气碳排放的一个主要不确定来源,因为驱动各生态系统Q10模式的因素是相互独立评估的。本研究采用了来自各大洲和主要生物群落的332个地点的土壤,同时评估了全球Q10模式的主要驱动因素。与生化难分解性、矿物质保护、底物数量和环境因素相比,土壤微生物群落(即微生物生物量和细菌分类群)解释了Q10值变化中的最大部分。提供了确凿的证据表明土壤微生物群落在很大程度上主导了土壤异养呼吸对变暖的响应,因此在评估陆地碳—气候反馈时需要明确考虑这一因素。02研究背景土壤碳(C)通过土壤异养群落的呼吸释放到大气中是导致大气CO2增加的基本途径。土壤呼吸每年释放的二氧化碳大约是人为排放的五倍,这在很大程度上决定了陆地生态系统是碳源还是碳汇。土壤异养呼吸的温度敏感性(即土壤微生物呼吸随着温度上升10°C而增加的因素;Q10)是预测陆地C-...
发布时间: 2024 - 05 - 17
浏览次数:0
作者:
发布时间: 2021 - 11 - 01
点击次数: 0
土壤中氮的来源一般有以下几方面:施入土壤中的化学氮肥和有机肥料、动植物残体的归还、生物固氮、雷电降雨带来的等等,目前,施入土壤中的肥料是土壤氮的主要来源。今天栢晖生物给大家整理了如何通过碱解扩散法测定土壤水解性氮一、试剂(1)1.0mol/L氢氧化钠溶液:称取化学纯氢氧化钠40 g,用蒸馏水溶解后冷却定容到1000 ml。(2)1.2mol/L氢氧化钠溶液:称取化学纯氢氧化钠48 g,用蒸馏水溶解定容到1000 ml。(3)1.8mol/L氢氧化钠溶液:称取化学纯氢氧化钠72 g,用蒸馏水溶解后冷却定容到1000 ml。 (4)2%硼酸溶液:称取20 g硼酸,用热蒸馏水(约60℃)溶解,冷却后稀释至1000ml,用稀盐酸或稀氢氧化钠调节pH至4.5(定氮混合指示剂显葡萄酒红色)。 (5)0.005mol/L(1/2 H2SO4)硫酸标准溶液:量取H2SO4 2.83 mL,加蒸馏水稀释至5000 mL,然后用标准碱或硼酸标定之,此为0.0200mol/L(1/2 H2SO4)标准溶液,再将此标准溶液准确的稀释4倍,即得0.0050mol/L(1/2 H2SO4)的标准液。(6)定氮混合指示剂:0.5g溴甲酚绿和0.1g甲基红溶于100ml乙醇中。 (7)特制胶水:阿拉伯胶(称取40g粉状阿拉伯胶,溶于50 ml蒸馏水中)在烧杯中热温至70—80℃,搅拌促溶,约1小时后放冷。加入甘油20 mL,饱和碳酸钾水溶液20 mL,搅拌、放冷。离心去除泡沫和不溶物,清液贮于具塞玻璃瓶中备用。(最好放置在盛有浓硫酸的干燥器中以除去氨) (8)硫酸亚铁(粉状) :将分析纯硫酸亚铁磨细保存于阴凉干燥处。二、主要仪器 扩散皿、微量滴定管、1/1000分析天平、恒温箱、玻璃棒、毛玻璃、皮筋、吸管(2 ml和10 ml),腊光纸、角匙、瓷盘。三、试样的制备 称取通过18号筛(孔径1 mm)风干样品2.000 g(精确到0.001g)和1 g硫酸亚铁粉剂,均匀铺在扩散皿外室内,水平地轻轻旋转扩散皿,使样品铺平。(水稻土样品则不必加硫酸亚铁。) 四、分析步骤1. 用吸管吸取2%硼酸溶液2 ml,加入扩散皿内室,并滴加1滴定氮混合指示剂,然后在皿的外室边缘涂上特制胶水,盖上毛玻璃,并旋转数次,以便毛玻璃与皿边完全粘合,再慢慢转开毛玻璃的一边,使扩散皿露出一条狭缝,迅速用移液管加入10 ml 1.8 mol/L氢氧化钠于皿的外室(水稻土样品则加入10 ml 1.2 mol/L氢氧化钠),立即用毛玻璃盖严。2. 水平...
作者:
发布时间: 2021 - 10 - 29
点击次数: 0
可溶性蛋白指可以以小分子状态溶于水或其他溶剂的蛋白。通常在植物生理、微生物、食品加工等实验中作为重要指标。如可溶性蛋白是植物抗旱性的重要指标之一。今天栢晖生物就给大家分享一下如何通过考马斯亮蓝染色法测定植物中的可溶性蛋白:“1试剂所有试剂除注明者外,均为分析纯。1.1 考马斯亮蓝溶液配制:称取100 mg考马斯亮蓝,溶于50ml 90%乙醇中,加入100ml 85%(W/V)磷酸,再用蒸馏水定容到1L。在过夜后过滤并贮于棕色瓶中,常温下可保存一个月。1.2 90% 乙醇1.3 100 g/ml 牛血清蛋白(BSA)标准溶液:称取10mg BSA定容至100 ml即为100 g/ml。或称取25 mg BSA加蒸馏水水溶解后定容至100 ml,再从中吸取40 ml蒸馏水定容至100ml。1.4 0.05 mol/LpH7.8磷酸配制:A母液,0.2 mol/L磷酸氢二钠溶液:取Na2HPO4·12H2O (分子量358.14)35.85 g,用蒸馏水定容至500 ml。B母液,0.2 mol/L磷酸二氢钠溶液:取NaH2PO4·2H2O (分子量156.01)1.5601 g,用蒸馏水定容到50 ml。1.5 0.05M pH7.8磷酸:分别取A母液228.75ml,B母液21.25ml,用蒸馏水定容至1000ml。“2主要仪器万分之一分析天平、紫外可见分光光度计、离心机“3试样的制备取风干的实验室待测样品充分混匀后,籽粒全部通过 0.25mm(秸秆通过 0.5mm)孔径筛,装入样品瓶备用。“4分析步骤4.1 试样溶液制备样品提取:取鲜样0.2—0.5g,用蒸馏水或缓冲液研磨成匀浆后,3000r/min—4000r/min离心10min,上清液备用。4.2 标准曲线绘制取6支具塞试管,依次加入标液0、0.2、0.4、0.6、0.8、1.0ml,然后用蒸馏水补充至1ml,再向各管中加入5ml考马斯亮蓝试剂,5min左右,以0号试管为空白对照,在595nm下比色测定吸光度,以蛋白质含量为横坐标,以吸光度为纵坐标绘制标准曲线。4.3 样品的测定吸取样品提取液1.0ml(视蛋白质含量适当稀释),放入试管中(每个样品重复两次),加入5ml考马斯亮蓝试剂,摇匀,放置2min待反应完成,在595nm下比色,测定吸光度,并通过标准曲线查蛋白质含量。“5结果计算式中:C—查标准曲线值,g;Vt—提取液总体积,ml;WF—样品鲜重,g;Vs—测定时加样量,ml所得结果应保留小数点后三位
作者:
发布时间: 2021 - 10 - 29
点击次数: 0
摘要植物菌根互作调节了植物氮(N)的限制,并可以为CO2增加对植物生长影响的持续时间和强度提供模型预测信息。在成熟的温带森林中,随着自然土壤养分梯度的增加,红栎(Quercus rubra L.)对CO2增加 (iCO2)的施肥反应呈积极的、但依赖于环境的树木年代学证据。我们通过外生菌根(ECM)真菌N觅食性状相关的宏基因组测量和植物吸收无机氮(IN)和土壤有机质绑定N (N-SOM)的树木年代学模型共同来研究这种异质性响应。在IN有效性较低的土壤条件下,N-SOM可以促进树木生长,ECM真菌群落具有更大的降解SOM和获得N-SOM的基因组潜力。这些树经历了38年的持续CO2施肥。相比之下,植物在IN丰富的土壤中生长,与之共生的ECM真菌群落具有较低的SOM降解能力,iCO2对树木生长并无显著影响。本研究阐明了ECM真菌群落的N觅食性状分布会如何影响树木对N-SOM的获取及后续其对iCO2的生长响应。研究背景逐渐升高的CO2刺激了全球范围内的总初级生产力,地球系统模型(ESM)指出这种效应可延续至2070年。虽然全球范围的研究推断出适度的历史施肥效应,但在成熟森林生态系统规模上,CO2增加刺激生产力的证据尚不明确。在成熟森林中进行的CO2富集控制实验表明CO2升高(eCO2)对树木生长存在着正的、适度的和饱和的响应。氮(N)有效性,特别是在成熟的森林被广泛认为制约了树木生长对CO2的响应。植物氮限制通常与IN的有效性有关,而IN需通过微生物矿化土壤有机质(SOM)转化而成。相比之下,土壤有机质绑定N (N-SOM)被认为是植物无法直接获得的, ESM模型中很少考虑N-SOM的作用。然而,对N-SOM的收收可能是特定植物短期适应IN供给不足的重要途径。植物对N-SOM的吸收取决于外生菌根(ECM)真菌共生体的活性。ECM真菌可能酶降解和非酶降解机制获得N-SOM。尽管ECM群落为植物提供了大部分的N,但ECM群落及其N-觅食特性与植物对iCO2响应之间关系的研究及其缺乏,极大地限制ECM宿主植物生长对iCO2相应的准确预测。植物与ECM形成互惠共生关系以最大化获取氮和最小化植物碳(C)支出(C投资的N收益)。不同的ECM类群降解SOM的能力差异很大,更强的分解能力需要更多的植物C投资。在IN有效性较低的条件下,选择获取N-SOM可能更加有利。我们推测由于N- SOM和IN都对树木生长有贡献。因此,与具有更强分解潜力的ECM群落共生的树木(即生长在IN贫乏土壤中)的对iCO2的响应最大。相反,树木氮源以IN为主(即生长在IN丰富的土壤中),树木对iCO2的...
作者:
发布时间: 2021 - 10 - 28
点击次数: 0
中国生态学大会第二十届2021年10月25日,由中国生态学学会主办,上海师范大学承办的第二十届中国生态学大会在上海顺利召开。大会主题为“生态科学新使命:促进生态安全与绿色发展”。本次大会设有大会特邀报告会、专题分会场报告会、墙报展示、全国生态学研究生论坛等形式,同时举办与生态学相关的科研仪器、设备、软件、文献出版和生态产品展示活动,栢晖生物作为本次会议唯一一家参展的第三方科研检测机构,受到广大参会者的关注。
作者:
发布时间: 2021 - 10 - 12
点击次数: 0
摘要植物源和微生物源碳(C)在土壤剖面中的化学组成已被定量评估,但基于根际视角的植物源和微生物源C在土壤有机碳形成中的垂直分布格局及其相对贡献仍然缺乏。我们以云杉人工林(Picea asperata)为研究对象,量化了矿质层土壤不同深度(0-10 cm, 10-20 cm及20-30 cm)根际微生物源C、植物源C和土壤有机碳(SOC)的差异化积累,并分析了其垂直分异规律的关键调控因素。此外还进一步揭示了植物源和微生物源C对根际SOC的相对贡献。结果表明,根际微生物和植物源C、SOC含量随土壤深度的增加而降低,主要受根生物量和微生物生物量的调节。此外,微生物源C对根际SOC的贡献(大于62%)显著高于植物源C (小于6%)。上述结果表明,高寒人工针叶林根际土壤微生物源C是矿质土壤上层根际SOC的主要贡献者。研究结果从根际视角为评估土壤剖面中微生物或植物源C对SOC的相对贡献提供了直接的实验证据。关键词根际,微生物源C,植物源C,土壤剖面,高寒针叶林研究背景土壤有机碳(SOC)的组成和主要来源已经成为当前生态学和土壤学领域亟需解决的核心科学问题之一。根际作为受根系活动强烈影响的微生物热点区,根系生理代谢活性在土壤剖面的变异很可能导致根际土壤C动态的垂直变异。然而,目前的大部分研究仅关注非根际SOC化学组成和来源(植物源和微生物源C)的垂直分异规律,而忽视了土壤垂直方向上根-土互作差异所导致的根际SOC形成途径的空间分异规律。因此,求证和量化森林根系活动介导的根际SOC组成和来源的垂直分异规律已成为一个十分重要又极度缺乏的研究课题。研究内容以西南亚高山典型的云杉人工林(Picea asperata)为试验对象,利用2种被广泛使用的生物标志物(氨基糖和植物源脂类/木质素酚类),量化了矿质土壤不同深度(0-10 cm, 10-20 cm及20-30 cm)根际微生物源和植物源C的含量,并分析了其垂直分异规律的关键调控因素。此外还进一步揭示了植物源和微生物源C对根际SOC的相对贡献。主要结果1)SOC、植物源C和微生物源C含量随土层深度的变化随着土壤深度的增加,SOC含量显著降低(图1)。其次,土壤微生物残体C、真菌残体C和细菌残体C也呈下降趋势(图2),并且各土层中根际真菌残体C是微生物残体C的主要组成部分(图2)。此外,随着土壤深度的增加,长链脂肪酸、角质、软木脂和木质素酚单体的含量均呈下降趋势(图3),并且各土层植物源C主要成分为软木脂(占57.59 ~ 63.27%),其次为长链脂肪酸(占17.14 ~ 24.66%),最后为木质素酚单体(占4.74 ~ 13.5...
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务