028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 全球森林的大气氮沉降: 现状、影响和管理方案

日期: 2022-03-22
标签:

原名:Atmospheric nitrogen deposition to global forests: Status, impacts and

management options

译名:全球森林的大气氮沉降: 现状、影响和管理方案

期刊:Environmental Pollution

IF:8.071

发表时间:2021年4月13日

第一作者:Enzai Du

通讯作者:Enzai Du(enzaidu@bnu.edu.cn)

合作作者:Mark E. Fenn , Wim De Vries , Yong Sik Ok

主要单位:

文献解读| 全球森林的大气氮沉降: 现状、影响和管理方案

1.前言:

氮(N)及其化合物和反应的发现,促进了人类从18世纪开始对氮循环的认识。由于Habere Bosch工艺的发明将N2转化为氨(NH3),即大大增加了用于粮食生产的N肥,从而维持了此后全球人口的增长。反过来,人口增长进一步推动了化石燃料的燃烧,并增加了作为副产品的氮氧化物(NOx)在大气中的排放。总的来说,人类活动产生的活性氮极大地增加了活性氮对环境的损失,并导致了一系列的环境影响。

森林覆盖了全球约三分之一的陆地表面,提供多种生态系统服务(例如,保持土壤、水和生物多样性)以及基本的文化或精神价值。通过大气沉降的新N输入可对森林生态系统既有有利影响,也有有害的影响,例如在N限制条件下刺激碳(C)固存、物种多样性的丧失、土壤酸化和养分失衡等。因此,从区域尺度到全球尺度,了解N沉降的现状以及N沉降的变化对森林生态系统结构和功能的影响具有重要意义。这对于预测森林生态系统服务的未来变化,更好地指导森林管理,提高天然林和人工林的生态弹性至关重要。本文综合了10篇论文最近的前沿研究:1)氮沉降对全球森林的特征,2)氮沉降对森林结构和功能的影响,3)森林生态系统对氮沉降区域趋势的响应,4)减轻氮沉降对森林生态系统负面影响的管理方案(框架见图1)。

文献解读| 全球森林的大气氮沉降: 现状、影响和管理方案

1. 森林生态系统中氮N沉积的模式、影响和管理方案图概括了本文的框架。

2. 氮沉降对全球森林的状况、影响和管理方案

2.1.全球森林氮沉降的空间变异

森林具有高冠层表面积的特点,是氮沉降的重要汇,具有比其他土地利用类型更高的大气氮获取效率。基于不同的建模方法和森林复盖率标准,全球森林生物群总氮沉降量的估计值在19~23Tg N yr-1之间。此外,对森林特定N沉降的模型预测(EMEP rv4.17)与网格平均N沉降的模型预测进行比较表明,在网格尺度上,这两个值之间的差异可能高达2倍,在某些极端情况下甚至超过5倍。这种大小的差异对确定森林生物群的临界超载有着深远的影响。因此,这一分析证明了使用特定于森林的氮沉降来评估森林生态系统响应的价值,而不是现有大多数关于氮沉降影响的研究中使用的基于网格的值。

2.2.氮沉降对森林结构和功能的影响

作为外源N输入,N沉降直接增加N的有效性,从而影响N的循环以及森林生态系统的结构和功能。本文综述了氮沉降对森林生态系统中土壤氮转化、菌根真菌群落、植物多样性以及净初级生产力(NPP)和碳固存的影响。

Cheng等(2019)综述了土壤氮素转化的控制因素(即氮矿化、硝化和固定),并综合了森林生态系统净氮转化和总氮转化对氮沉降的响应。他们发现,氮沉积显著提高了矿化和硝化的速率。然而,氮沉降对总氮转化速率的影响,如自养硝化作用、异养硝化作用、异化硝酸盐还原为氨氮作用、氮矿化作用和氮素固定化作用等,目前还知之甚少。与净土壤氮素转化相比,Cheng等(2019)等人提出了新的土壤氮素转化模式,强调了评估土壤总氮转化过程的速率及其对氮沉降的响应的重要性,这可以新地揭示在氮沉降变化的背景下的生态后果。

树木受益于根系和某些根生真菌(如外生菌根真菌、丛枝菌根真菌)之间的联系,这主要是由于改善了养分供应和提高了对应激因素(如干旱、病虫害)的抵抗力。Lilleskov等(2019)总结了氮沉降对森林生态系统菌根群落结构和功能的影响。外生菌根真菌对氮沉降的强烈敏感性意味着关键的外生菌根种或属的消失,这将降低其获取有机氮和/或磷的能力,并抑制有机质的分解。在北方和温带森林中,针叶树的外生菌根群落比落叶乔木的外生菌根群落更敏感,然而,氮沉降对丛枝菌根和热带外生菌根群落的影响却知之甚少。为了更深入地了解氮沉降引起的菌根群落变化的功能后果,需要进一步努力将系统发育学方法与生理、群落和生态系统研究相结合。林下群落可以支配森林植物多样性,并强烈影响地上部分的吸收和生态系统功能。Perring等(2019)通过分析1814个欧洲温带森林地块的数据发现,林下物种和群落对氮沉降的反应差异很大,并取决于特定的环境(例如,历史管理、光照和pH条件)。这些信息对临界负荷的评估以及森林生态系统中植物生物多样性的保护和恢复具有重要意义。

森林碳汇是由净初级生产力驱动的,而净初级生产力又广泛地受到N有效性限制。森林生态系统新的反应性氮输入包括氮沉降和生物固氮(BNF)。研究表明,氮诱导的新NPP (3.46 Pg C yr-1)贡献了1.83 Pg C yr-1。这与全球已建成森林碳汇的独立估计大致相符,因此,全球森林碳汇强烈受氮诱导的新NPP驱动。同时,与BNF相比,N沉降对全球森林新NPP (0.41 vs 3.07 Pg C yr-1)和碳汇(0.25 vs 1.58 Pg C yr-1)的贡献较小氮沉降中新的NPP和C的吸收可能会因BNF的下降而部分抵消,但这种效果尚未得到评价。

2.3. 森林生态系统对区域氮沉降趋势的响应

现有的研究大多强调过量氮输入对森林生态系统的影响,而对氮沉降减少对生态系统恢复的研究较少。Schmitz等(2019)根据5个监测良好的指标(包括土壤可溶性氮、叶面氮浓度、林下植被组成、树木生长和树木活力)的趋势,综述了欧洲森林对氮沉降减少的响应的大规模观测研究。结果表明,随着氮沉降的减少,土壤硝态氮和叶面氮浓度的降低幅度有限,而对林下植被、树木生长或活力的影响则不大。Gilliam等(2019)综合了北美东部森林土壤酸化、植物多样性、土壤微生物群落、森林碳氮循环和地表水化学的响应,进一步提出了滞后模型,以预测未来大气氮沉降下降可能带来的森林恢复。综上所述,N沉降一般会导致中国森林土壤N有效性、叶片N含量、叶片磷吸收和土壤N淋失增加,土壤pH值和微生物生物量降低。此外,氮沉降显著改变了林下群落的物种组成,但很少有实验报告植物物种丰富度的损失。根据进一步的荟萃分析,氮沉降增加了温带森林的初级生产力和土壤呼吸,而它通常对树木生长有中和作用,对亚热带和热带森林的土壤呼吸有负作用。由于国家环境空气质量标准更加严格,预计中国的氮沉降率和氧化态与还原态氮的比例将会下降,与欧洲和美国的趋势相同。因此,欧洲和美国森林对氮沉降减少的响应综述可能会为中国森林在未来的反应提供线索。

2.4. 减轻氮沉降负面影响的管理方案

尽管自20世纪90年代以来,美国和欧洲许多地区的氮沉降都有所下降,但从数十年氮沉降升高的影响中恢复的速度似乎很慢。管理干预有可能减少氮沉降的负面影响,促进生态系统的恢复。例如,研究表明,焚烧可显著提高土壤氮有效性和林下植物多样性,疏伐可显著提高林下植物多样性,石灰化可显著提高土壤碱度,添加C可显著降低土壤氮有效性。

3. 挑战和前景

在了解氮沉降对全球森林生态系统的影响方面取得了重要成果。然而,许多研究都集中在氮沉降的单因素效应上。因此,在评估未来N沉降的生态影响时,我们强调应共同考虑多种非生物因素(如气候变暖、co2富集、干旱和地表臭氧增加)和生物因素(如昆虫暴发和入侵物种)。未来的氮沉降趋势可能因全球不同地区而有显著差异,例如,氮沉降作为压力源的相对重要性在许多发展中国家可能会增加,而在欧洲和美国则在下降。在氮沉降增加的地区,氮沉降升高的生态效应需要进一步评估。在氮沉降呈下降趋势的区域,需要进一步深入研究氮沉降增加对生态系统恢复的影响趋势和机制。此外,在N沉降热点地区,还可以考虑森林管理方案,以减轻N沉降的负面影响,促进生态系统的恢复。

原文网络连接:https://doi.org/10.1016/j.envpol.2019.04.014

  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 06 - 19
  • 点击次数: 0
    2025 - 06 - 13
    原文链接:https://doi.org/10.1038/s41467-025-60036-5 如有检测相关需求欢迎so栢晖生物了解更多~
  • 点击次数: 0
    2025 - 06 - 05
    根系分泌物的研究是理解土壤-植物-微生物互作的核心环节,是破解土壤“黑箱”的钥匙。对生态理论(如植物-微生物共进化)、应用实践(智能农业、生态修复)均具深远意义。01土壤生态系统的“隐形语言”根系分泌物是植物与土壤环境沟通的化学信号,包含有机酸、糖类、氨基酸、酚类、酶等数千种化合物。它们如同植物的“代谢指纹”,动态响应环境变化(如干旱、养分胁迫或病原体攻击),并调控周围土壤生物的活性。研究这些物质能揭示植物如何主动塑造其根际微环境,而非被动适应。02驱动土壤养分循环的关键引擎养分活化:例如,植物在缺磷时分泌柠檬酸、苹果酸等有机酸,溶解土壤中固定的磷酸盐;缺铁时分泌酚类化合物(如禾本科植物的麦根酸)螯合铁离子。碳分配策略:根系分泌物占植物光合产物的5%-40%,是土壤微生物的主要能源。其化学组成直接影响微生物介导的碳氮磷循环效率,进而决定土壤肥力。03超微生物群落的“指挥棒”选择性招募:植物通过分泌物招募互利菌群(如固氮根瘤菌、菌根真菌),或抑制病原菌(如分泌抗菌酚类)。例如,豆科植物分泌黄酮类物质诱导根瘤菌结瘤基因表达。群落结构调控:分泌物组成差异会导致根际微生物α/β多样性变化,影响生态功能(如抑病型微生物组的形成)。04应对全球变化的潜在杠杆气候适应性:高温或CO₂升高可能改变分泌物量与成分(如增加糖类分泌),进而反馈于土壤碳封存潜力。理解这一机制有助于预测生态系统碳平衡。污染修复:某些分泌物(如紫苏酮)能激活根际降解菌,加速石油烃、农药等污染物的分解,为植物-微生物联合修复提供策略。05农业可持续性的突破口精准施肥:解析作物品种的分泌物特征可指导微生物菌剂开发,减少化肥依赖(如利用磷solubilizing 细菌)。抗逆育种:筛选分泌物中关键抗逆物质(如干旱诱导的脱落酸类似物),可为抗性品种选育提供分子标记。连作障碍缓解:阐明分泌物积累导致的土传病原菌富集机制(如黄瓜...
  • 点击次数: 0
    2025 - 05 - 30
    在生态土壤研究中,土壤铁铝氧化物和铁结合态有机碳是两类不同的组分,它们在形成机制、生态功能及研究意义上存在显著差异。铁铝氧化物和铁结合态有机碳在有机碳固存中的双向作用:铁结合有机碳(OC-Fe)是MAOC的重要组成部分,通过形成Fe-有机复合物在SOC的积累和保存中起着至关重要的作用。Fe通过三种主要机制促进SOC的积累:促进土壤团聚体的形成、与溶解有机碳的吸附和共沉淀以及改变微生物活动。同样,Al可以吸附到活性表面位点或与土壤固相共沉淀,从而增强SOC的稳定性。因此, Fe- Al氧化物可以加速OC- Fe的积累并在SOC封存中发挥关键作用。编辑搜图以下是两者的主要区别: 1. 定义与组成 铁铝氧化物化学本质:主要是铁(Fe)和铝(Al)的氧化物、氢氧化物及其水合矿物,如赤铁矿(Fe₂O₃)、针铁矿(FeOOH)、三水铝石(Al(OH)₃)等。来源:由原生矿物风化或次生矿物形成,受土壤pH、氧化还原条件及气候影响。特点:无机矿物相,具有高比表面积和可变电荷,对磷、重金属等有强吸附能力。铁结合态有机碳化学本质:有机碳(如腐殖酸、多糖等)通过吸附、共沉淀或配位键与铁氧化物结合形成的复合体。来源:有机质与铁铝氧化物的相互作用,常见于厌氧-有氧交替环境(如湿地、水稻土)。特点:有机-无机复合体,是土壤碳库的重要稳定形式。 ------------- 2. 形成机制 铁铝氧化物通过化学风化(如硅酸盐矿物分解)或氧化还原过程(如Fe²⁺氧化为Fe³⁺)形成。受土壤pH和Eh(氧化还原电位)调控,酸性或厌氧条件促进溶解,中性/好氧条件促进沉淀。铁结合态有机碳吸附作用:有机碳通过静电或配体交换吸附在铁氧化物表面。共沉淀:有机质与铁离子共同沉淀形成混合相(如铁-有机胶体)。微团聚体保护:铁铝氧化物作为...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务