028-8525-3068
新闻动态 News
News 行业新闻

文献解读|草地土壤固碳:当前的认识、挑战和解决方案

日期: 2022-09-16
标签:
文献解读

原名:Grasslandsoil carbon sequestration: Current understanding, challenges andsolutions

译名:草地土壤固碳:当前的认识、挑战和解决方案

作者:YongfeiBai and M. Francesca Cotrufo

期刊:Science

影响因子/分区:43.546/1区

发表时间:2022.08.04




01
关键词

草地土壤固碳、土壤有机碳、微生物残体碳、有机碳储量、碳封存

02
 研究背景

背景:草地生态系统的面积为5250万平方公里,占除格陵兰岛和南极洲外地球陆地表面的40.5%。草地具有良好的生态功能,生产功能和文化功能。草地还存储了约34%的陆地碳储量,其中约90%的碳存储在地下,作为根系生物量和土壤有机碳(SOC),因此在土壤固碳方面发挥着重要作用。草原非常容易受到人类干扰(如过度放牧和土地利用转向农业)和气候变化的影响。在全球范围内,草地的生物多样性和生态系统功能严重下降,导致有机碳储量减少。

主题:基于微生物在土壤有机碳形成和持久性中起关键作用这一新范式,提出了植物多样性通过影响地上和地下生物量分配、凋落物和根系分泌物碳输入,调控土壤微生物体内转化、体外修饰和微生物残体续埋过程,进而调控矿物结合态有机质和颗粒态有机质的形成、积累和持久性的概念框架。

03
科学问题

本文研究了三个问题:

(i)关键的生物和非生物因子如何调控草地有机碳的形成、周转和稳定性?

(ii)气候变暖、降水变化和火灾如何影响有机碳储量?

(iii)放牧管理如何影响有机碳,以及改进的实践如何导致有机碳封存?

04
研究内容

(1)有机碳封存的机制与驱动因素

土壤有机碳分布在POM和MAOM组分之间,只有一小部分(1-2%)以溶解有机物的形式存在。POM由植物和微生物残基破碎形成,因此由大聚合物组成的轻质碎片组成(图1)。MAOM由从植物残基中浸出或从植物根部渗出的单个小分子形成,与POM相比,具有较低的碳氮比。MAOM有助于土壤长期固碳。根系分泌物如溶解糖、氨基酸和有机酸是MAOM形成的关键途径,主要通过微生物在体内转化(图1)。

约46%的根系分泌物、9%的根系组织和7%的地上碳残留转化为MAOM,而19%的根系凋落物转化为POM,在田间和受控的实验室条件下生长的作物、草地和树木。因此,根系碳分配较大的植物对土壤固碳,特别是MAOM的形成贡献较大。

植物多样性是有机碳形成和储存的关键驱动因素。高植物多样性通过提高地下碳输入和促进微生物生长、周转和埋葬尸块来提高有机碳储存。保持高水平的生物多样性和根系碳输入对提高草地有机碳储量和持久性至关重要(图1)。

真菌和细菌对草原土壤有机碳的积累、稳定和周转有着强烈的影响(图1)。微生物坏死在有机碳积累和稳定中起着重要作用。在全球草原表层土壤中,微生物坏死块对总有机碳的贡献在23~74%之间,平均为50%(图2A),高于农业土壤和温带森林土壤(17,18)。坏死物对土壤有机碳变化的贡献随土壤深度的变化,主要以真菌坏死物为主,全球草原上真菌与细菌的坏死物碳比在1.2~ 4.1之间(图2B)。此外,菌根真菌与植物根系共生,直接从植物获得碳,可以调节土壤中的固碳能力。

气候调节微生物的代谢活动,从而控制大规模的微生物坏死和SOC存储模式。在全球范围内,寒冷潮湿的土壤促进微生物坏死物碳的积累。最大的微生物坏死团碳发生在平均年降水量900-1000毫米,平均年温度<0°C(图2C),这表明在这些系统中保存当前储量是当务之急。

微生物多样性也可能通过调节土壤中微生物同化碳的效率和有机矿物组合的产生来影响有机碳的存储。近年来,研究发现微生物多样性可以促进凋落物来源的POM的稳定效率,但会降低MAOM的稳定效率。


文献解读|草地土壤固碳:当前的认识、挑战和解决方案

图1

(2)气候变化对有机碳封存的影响

气候变化对土壤固碳的影响因草地类型、气候和土壤条件而变化。在半干旱草原,变暖可能会增加根系的碳输入,但通过抑制真菌生长和土壤呼吸抑制MAOM的分解,从而导致MAOM库的增加。在高寒草原,变暖引起的冻土退化通过降低微生物网络的稳定性和加速SOC(特别是POM)衰减来减少活动层有机碳的存储。最近的一项荟萃分析表明,长期变暖会增加木质素酶和纤维素酶活性的比值,提高微生物对顽固碳的利用,导致表层土壤顽固碳库减少14%。


文献解读|草地土壤固碳:当前的认识、挑战和解决方案

图2

未来预估的降水异常和长期干旱可能会通过改变植物群落组成、生产力和碳分配以及微生物过程来影响草地生态系统的土壤碳固存。在半干旱草原,增加降水通过刺激真菌生长和增加土壤交换性镁来促进土壤聚集。降水异常(增加和减少)可以显著改变草地的根冠比和垂直根系分布(31),从而调节土壤微生物生长和有机碳储量。然而,在全球尺度上,由于数据可得性有限,草地POM仅随降水增加呈负趋势,而MAOM和总有机碳浓度则呈正趋势。

气候变化引起的火灾频率的增加,通过强化养分限制,抑制植物生长和碳输入,极大地改变草地的长期碳储量。在全球热带稀树草原的上层土壤(0-20厘米),火灾频率升高平均每年每公顷减少0.21毫克碳储量。然而,最近的一项研究表明,火灾抑制(即>60年的不火灾)对热带稀树草原的总有机碳储量(0~ 60 cm)影响不大,尤其是在更深的土层中,土壤碳受火灾频率变化的影响较小。

(3)放牧压力对草地土壤碳的影响

五大洲,牲畜放牧平均减少了15%的有机碳存量,其中热带减少最多(-22.4%),温带草原减少最少(-4.5%)。在全球范围内,轻度放牧(如季节性和轮 牧)对土壤碳储量的负面影响最小,甚至可以促进土壤碳储量,而中度和重度(连续)放牧则会持续降低土壤碳储量(图3A)。


文献解读|草地土壤固碳:当前的认识、挑战和解决方案

文献解读|草地土壤固碳:当前的认识、挑战和解决方案3

      

放牧对土壤固碳的影响程度和方向取决于环境,并因气候和土壤条件、植被特性、牲畜类型、草食动物多样性、放牧策略以及放牧强度和持续时间而变化。放牧强度的增加对土壤有机碳的负面影响随着水分的增加而减小,但在温带草地上,随着温度的升高和放牧时间的延长,负面影响会更严重。绵羊放牧一般比牛放牧对有机碳的负面影响更大,且放牧对表层土壤有机碳的减少显著大于底土。此外,与连续放牧(或自由放牧)相比,轮牧始终显示出更高的有机碳储量,特别是在矿物相关部分。

(4)草原土壤碳贮量的管理

管理的改进可能会通过几个相互关联的机制导致土壤碳积累。从农田到草地的转变消除了耕作的干扰,增加了根系对土壤的碳输入。恢复退化草地的生物多样性可以增加植物产量,促进微生物周转和尸块埋葬。放牧改良可以增加高质量的根系碳(低碳氮比)输入量和氮滞留量,从而促进土壤中MAOM的形成和持久性。播种豆科植物通过提高根系生物量、根系分泌物和细根周转增加土壤碳氮输入。无机肥料和有机肥料的施用可以促进初级生产力和优质植物向土壤的碳输入,从而导致更有效的微生物碳利用。

为了恢复草地,研究人员采取了多种管理干预措施(图3,B和C)。在所有改进的管理措施中,由耕作转为草地、增加植物多样性、播种豆类和牧草以及施肥与土壤固碳率最高相关(图3C)。然而,管理对土壤碳储量影响的方向和程度与环境有关,取决于气候、植物群落组成和土壤性质等因素。因此,放牧实践需要在理解环境的基础上实施。此外,还需要进一步研究管理干预下草地生物多样性、初级生产力和土壤固碳之间的协同和权衡。

土壤有机碳固碳潜力的全球格局主要是由不同区域平均固碳速率和退化草地面积的差异造成的。欧洲草地的平均土壤碳封存率更高(图4A)。此外,优化放牧强度(例如轮牧)预计将使全球放牧地的土壤固碳潜力增加148至6.99亿吨(MtCO2e year -1)(图4B),其中最大的固碳潜力发生在中南美洲、非洲和亚洲(51)。此外,播种豆科植物预计可使全球牧场的有机碳储量增加147mtCO2年-1(51),其中欧洲最大的牧场和最高的平均土壤固碳率都显示出最大的土壤固碳潜力(图4C)。

文献解读|草地土壤固碳:当前的认识、挑战和解决方案

图4

05
总结

最近的研究在确定不同草原固碳和保存土壤碳的能力和关键机制、制定恢复生物多样性、保存现有有机碳储量、促进额外固碳以缓解气候变化和草地可持续管理等方面取得了显著进展。这些进展凸显了植物和土壤生物多样性在调节微生物坏死体碳、MAOM和POM的形成、调节气候变化影响以及通过管理改善和恢复促进全球草原有机碳储存方面的重要作用。

研究还表明,气候变化、放牧、火灾、草地恢复和缓解措施对土壤碳封存的影响受到多种环境相关因素的调节。未来需要进一步厘清各种草地管理措施的碳固存潜力及其不确定性和环境依赖性,揭示这些措施在生物多样性保护、气候变化减缓和食物生产方面产生的协同效应和权衡。


通过阅读本文知晓我们应采取以下行动:

1)恢复各类退化草地;

2)改进放牧地管理;

3)合理配置草地的生态-生产功能;

4)保护草地生物多样性;

5)牧场和人工草地中种植豆科植物;

6)改善草地施肥管理;

7)避免草地转化为农田、林地和其它用地。


文献解读|草地土壤固碳:当前的认识、挑战和解决方案

栢晖 #

 特色检测指标:

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素

其他土壤、植物、水体等常规检测指标均可测定,欢迎咨询相关工作人员了解详情

服务热线:028-85253068

18682730999(微信同号)

公司地址:成都市成华区四川检验检测创新科技园2号楼4层

文献解读|草地土壤固碳:当前的认识、挑战和解决方案




  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 01 - 09
    文献解读原名:Decadal application of mineral fertilizers alters the molecular composition and origins of organic matter in particulate and mineral-associated fractions译名:十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成和来源期刊:SBBIF:9.8发表时间:2023.07第一作者:Zhichao Zou摘要背景:长期矿质施肥对土壤有机质(SOM)的数量、质量和稳定性的影响仍不明确。方法:通过结合四种生物标志物(自由与结合态脂类、木质素酚和氨基糖),研究中国北方农田在10年矿质施肥下(400 kg N ha−1 yr−1, 120 kg P ha−1 yr−1 和 50 kg K ha−1 yr−1)的SOM的分子组成、分解和来源。我们关注于两个差异化的SOM组分:颗粒态有机质(POM)和矿质结合态有机质(MAOM)。结果:尽管施肥对全土SOC的影响有限,但导致MAOM中SOC增加23%,并且改变了其组成和来源。施肥使POM中植物源的萜类化合物增加46%,MAOM中长链脂类(≥20)增加116%,但是降低了POM中54%的短链脂类(结论:矿质施肥通过改变温带农业生态系统中矿物-有机复合体的分子组成和固存,增加SOM的稳定性和持久性。研究背景SOM能够维持土壤肥力、促进土壤水分存留和有机碳(SOC)固存,对农业生态系统的功能的发挥至关重要。在典型的农田,大量矿质肥料的输入增加了作物生产力,导致大量的碳(C)通过残体、根系及其分泌物进入土壤,随后改变了SOM周转。然而,我们对SOC稳定和固存对营养施肥的响应方向和程度的基础理解仍然不明确。之前的研究报道了农业生态系统中施肥管理导致更高、中性以及甚至更低的SOC水平。在集...
  • 点击次数: 0
    2025 - 01 - 02
    文献解读原名:Temperature-dependent soil storage: Changes in microbial viability and respiration in semiarid grasslands译名:随温度变化的土壤储存:半干旱草原微生物活力和呼吸作用的变化期刊:Soil Biology and BiochemistryIF:9.8线上发表日期:2024年12月发表日期:2025年3月通讯作者:田建卿(中国科学院植物研究所)亮点(1)相比于-20℃,在4℃下储存土壤细胞的存活率更高。(2)在 4 °C 下温和解冻 3 天可优化冻土中的细胞活力。(3)土壤呼吸对储存的响应取决于土壤类型。背景土壤微生物是生物地球化学循环的关键引擎,也是土壤有机碳 (SOC) 分解和稳定的关键驱动因素。理想情况下,研究人员应在取样后立即对新鲜土壤进行大多数微生物活动和微生物介导的土壤生物地球化学分析,然而,由于实际限制,在低温下储存土壤是土壤微生物学研究中的常见做法,可能会影响微生物活力和微生物介导的呼吸作用,几十年来,不适当的储存条件导致了已发表的研究中相互矛盾的结论。目前对储存过程中活微生物参数的变化和微生物介导的呼吸仍然缺乏了解。材料与方法(1)于2022年8月和2023年5月在从内蒙古草原生态系统研究站(IMGERS;116◦42′E,北纬43°38′,海拔约1260米)。中国内蒙古自治区采集了4种类型的土壤,包括大针茅(S.grandis)、羊草(L.chinensis)、西林河流域草甸(湿地)和浑善达克沙地(沙质)土壤。之后将4种类型的土壤样本分别在4℃和 -20℃下储存 0、5、40 和210天。对于在-20℃下保存的土壤,作者采用了两种解冻方法:室温下直接解冻和4 ℃下温和解冻(gentle thaw...
  • 点击次数: 0
    2024 - 12 - 06
    # 栢晖 #—特色检测指标—土壤、植物酶活检测氨基糖、PLFA及其同位素、磷组分木质素酚、CUE、有机氮组分、有机酸氨基酸、微生物量碳氮磷、同位素等苯多羧酸、红外光谱、微生物多样性等其他土壤、植物、水体等常规检测指标均可测定欢迎联系下方相关工作人员详细沟通
  • 点击次数: 0
    2024 - 11 - 29
    文献解读原名:Rhizosphere as a hotspot for microbial necromass depositioninto the soil carbon pool译名:根际是微生物残体进入土壤碳库的热点区期刊:Journal of EcologyIF: 5.3发表日期:2024.11.15第一作者:汪其同背景森林土壤是陆地生态系统最大的有机碳(SOC)库,高效发挥森林土壤碳汇功能是实现“双碳”战略目标的重要途径之一。相应地,科学认识森林土壤固碳过程与调控机制已成为当前森林生态学、土壤学领域重要的前沿基础科学问题与林业碳汇功能适应性管理的核心现实需求。近年来不断涌现的证据表明,微生物通过合成代谢而迭代积累的微生物残体很大程度上主导了SOC的长期积累和固持。其中,由于根源C持续输入在根系周围的根际微域形成了一个独特而又典型的微生物热点区,并伴随着更快的微生物生长和更强的微生物代谢活性,进而导致根际区微生物残体对长期SOC积累贡献能力比非根际区更为突出和明显。然而,目前大多研究通常将根际和非根际土壤视为一个均质有机体,而缺乏针对根际区SOC形成过程与稳定性机制的专一性试验研究,导致根际区土壤碳动态过程及其生态重要性在很大程度上未被探索和了解,已成为森林土壤碳汇功能变化认知最少且极为薄弱的关键环节之一。基于此,中国科学院成都生物研究所尹华军研究团队通过系统收集青藏高原典型高寒针叶林39个样点的根际和非根际土壤样品(图1),量化了根际和非根际土壤中有机碳和氨基糖的浓度,并通过计算根际相对于非根际土壤中增加的氨基糖与增加的有机碳的比例(RAS/SOC),评估了微生物残体对根际SOC积累的贡献程度。同时测定了根际土壤养分浓度和微生物生理性状,以揭示多变环境下根际微生物残体对SOC积累贡献的潜在微生物调控机制。图1  39个高寒针叶林采样点分布图我们假设:(1...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务