028-8525-3068
新闻动态 News
News 技术交流

关于赤霉素的测定

日期: 2021-09-02
标签:

赤霉素的测定


赤霉素(Gibberellins,GAs)作为植物体内广泛存在的一类生长调节剂,是高等植物体内的一类四环二萜羧酸化合物,参与调控植物种子萌发,下胚轴伸长,叶片伸展,花、果实及种子发育等诸多生理过程。截至1976 年就从植物中分离鉴定出32种赤霉素,至今,发现的赤霉素的种类己有百种之多。

研究表明,赤霉素在植物抵抗非生物胁迫中也发挥着重要作用,主要通过调节GAs的生物合成、信号转导及其生物活性,以提高植物对非生物胁迫的耐受性。

一、实验方法及原理

本次实验通过提取样品中植物内源激素,再以安捷伦1290高效液相色谱仪串联AB公司Qtrap6500质谱仪,测定植物内源激素。

1.试剂

以下所有试剂如无特别注明,均为分析纯。实验用水为蒸馏水,去离子水或相当纯度的水。

赤霉素(GA3)标准品、CNW C18 QuEChers填料、色谱级甲醇、乙腈、乙腈(样品提取液)。

2.仪器设备

(1)TG-16G台式高速离心机、电子天平、Agilent 1290高效液相色谱仪、SCIEX-6500Qtrap(MSMS)、气浴恒温摇床、超声清洗仪、水浴氮吹仪。

3.标曲溶液配置

(1)取甲醇溶液990 μl加入1.5 ml离心管,加入500 μg/ml每种激素标准品储备液各2 μl,震荡均匀,配置为终浓度1 μg/ml的使用母液以备后续使用。

(2)取甲醇溶液999.9 μl、999.8 μl、999.5 μl、999 μl、998 μl、995 μl、980 μl分别加入1.5 ml离心管,而后取步骤(1)中配置的母液分别0.1 μl、0.2 μl、0.5 μl、1 μl、2 μl、5 μl、20 μl顺序加入上述甲醇溶液中,配置为终浓度0.1 ng/ml、0.2 ng/ml、0.5 ng/ml、1 ng/ml、2 ng/ml、5 ng/ml、20 ng/ml的标曲溶液。

4.流动相配置

(1)有机相:取色谱纯甲醇900 ml加入1 L容量瓶,加入1 ml甲酸,以甲醇定容至1 L,颠倒混匀。

(2)无机相:取超纯水900 ml加入1 L容量瓶,加入1 ml甲酸,以超纯定容至1 L,颠倒混匀。

5.植物激素提取

(1)准确称取样品约0.3-0.8 g,加入10倍体积乙腈溶液;

(2)4℃提取过夜,12000 g离心5 min,取上清液;

(3)沉淀再次加入5倍体积乙腈溶液,提取两次,合并所得上清液;

(4)加入15-40 mg C18填料,剧烈震荡30 s,10000 g离心5 min,取上清液;

(5)氮气吹干,以200 μl甲醇复溶,过0.22 μm有机相滤膜,放入-20℃冰箱待上机检测。

(6)进样体积:2 µl。

6 实验结果与分析

(1)植物样品中激素含量(ng/g)=检测浓度(ng/ml)×稀释体积(ml)/称取质量(g)

其中稀释体积为样品最终溶解进样时所用的溶液体积,称取质量为提取时的取样质量。

(2)检测浓度由待测物质峰面积代入标曲方程,由仪器自动求得。

表:GA3检测结果 

样品名称

稀释体积(ml)

称取质量(g)

检测浓度(ng/ml)

激素含量(ng/g)

1

0.200

0.734

0.32

0.087

2

0.200

0.833

0.26

0.062

3

0.200

0.319

0.29

0.18

4

0.200

0.684

0.25

0.073


GA3标准曲线

关于赤霉素的测定 

校准曲线

物质名称

校正曲线

相关系数R2

权重

线性范围(ng)

GA3

y = 7193.05815 x + 186.40775

0.99298

1/X2

0.1-20


讨论:赤霉素在植物组织中含量低种类多紫外检测信号弱使得同时定性定量测定多种赤霉素比较困难。利用荧光分光光度法阳和紫外分光光度法测定赤霉素灵敏度低且样本间误差比较大。利用LC-MS和GC-MS测定赤霍素准确性高,但仪器价格昂贵且测试费用较高。因此有相关研究开发准确且经济适用的赤霉素测试方法,例如凝胶渗透色谱(GPC)及HPLC定量测定植物组织中GAs的方法。




  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 10 - 10
    13C固体核磁共振方法简述为了提高固体核磁共振测定的精确度,土壤样品在进行核磁共振分析前先用氢氟酸(HF)进行预处理。预处理方法如下:称量8克土壤样品于100mL塑料离心管中,加50mLHF(体积分数10%)溶液,摇床上振荡1h(25℃,200r/min),离心机上3800 r/min离心5min,弃去上清液,残余物继续用HF溶液处理。共重复处理8次,摇床时间依次是:第1-4次1h,第5-7次12h,最后1次24h。处理过后的残余物用蒸馏水清洗后以除去其中的HF溶液,方法如下:加50mL蒸馏水,振荡10min,离心5min(3800r/min),去掉上清液,整个过程重复4次。残余物在40℃的烘箱中烘干,过60目筛后置于密室袋中,备NMR上机测定。数据示例点击放大查看红外光谱方法简述土壤样品的光谱特征使用傅立叶变换红外吸收光谱进行分析。将干燥的样品与干燥的KBr(样品:KBr = 1:80的比例)在玛瑙研钵中汇合均匀并研磨至粉末状(粒度 < 2 μm),压成透明薄片。用傅立叶变换红外光谱仪(Spectrum 100; PerkinElmer, MA, USA)扫描测定并记录其光谱。光谱数据进一步用Omnic 8.3软件(Thermo Nicolet Corporation, USA)分析。根据前人的研究,我们选择了4个波峰区域来分析土壤C官能团特征并计算峰面积比:alkyl-C(2985 - 2820 cm-1);aromatic C=C(1800 - 1525 cm-1); O-alkyl-C(1185 - 915 cm-1) and aromatic CH(855 - 740 cm-1)(Pengerud et al., 2013)。基于峰面积比,我们计算了土壤SOM的疏水性指数(HI,alkyl-C/SOC)和芳香度指数(AI,alkyl-C/O-alkyl-...
  • 点击次数: 0
    2025 - 09 - 29
    BAIHUI文献解读原名:Heavy metal contamination threats carbon sequestration of paddy soils with an attenuated microbial anabolism.译名:重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱。期刊:GeodermaIF:6.6发表日期:2025.8第一作者:熊丽 江西省农业科学院土壤与肥料及资源环境研究所(熊丽课题组)01背景耕地中的土壤有机碳(SOC)不仅是土壤肥力和生产力的基础,更在缓解气候变化中发挥着重要作用——仅表层1米的土壤中就储存着全球SOC总量的近10%。SOC的生态功能主要取决于其循环转化与长期存留能力,而这些过程极易受到重金属污染等环境压力因素的显著影响。近百年来人类活动的密集开发,使农田土壤重金属污染日益严重,已成为威胁土壤健康和粮食安全的全球性问题。作为土壤碳循环的主要调控者, 微生物如同“针眼”般精准调控着有机质碳的转化过程,且对重金属具有高度敏感性。因此,重金属污染对微生物介导SOC转化的影响正引发学界越来越多的关注。图1:研究区及沿县岔河13个采样点位置示意图02科学问题(1)重金属污染会降低微生物可利用碳元素(CUE)并加速生物量周转;(2)微生物合成代谢能力减弱将显著影响污染稻田土壤中有机碳的变化。03材料与方法(1)本次实地考察在自1934年开采至2020年关闭的小龙钨矿周边展开。属亚热带季风气候区,年均气温18.6℃,年均降水量1726毫米。 (2)水稻种植是该地区最主要的农业类型,采用典型的早稻-晚稻轮作制度。 (3)在河流上下游13个采样点采集土壤样本 (图1),每个采样点选取三块相邻的稻田作为三重复样本。每块稻田内设置五个2×2米样方,每个样方从表层(0-20厘米)随机采集五个直径2.5厘米的土...
  • 点击次数: 0
    2025 - 09 - 09
    原名:Aggregate size mediates the stability and temperature sensitivity of soil organic carbon in response to decadal biochar and straw amendments译名:团聚体尺寸调控长期生物炭与秸秆添加下土壤有机碳的稳定性及温度敏感性期刊:Soil Biology & BiochemistryIF:10.3发表日期:2025年9月3日BAIHUI ORGANISMS作者简介第一作者:陈雅兰,北京师范大学环境学院励耘博士后,师从孙可教授。主要从事生物炭环境地球化学行为及环境效应的研究。以第一作者在GCB、SBB、EST、CEE等期刊上发表学术论文19篇(含共一3篇),1篇封面文章,1篇入选ESI高被引论文,引用800次,H指数17。主持国家自然科学基金青年项目、博士后基金站中特别资助、博士后基金面上项目。曾获宝钢优秀学生特等奖、北京市优秀毕业生、北师大优秀博士学位论文等荣誉。通讯作者:孙可,北京师范大学环境学院教授、博士生导师,国家杰出青年基金、国家优秀青年科学基金和北京市杰出青年基金获得者。主要从事生物炭环境地球化学行为及环境效应的研究。在GCB、SBB、EST等期刊上发表高质量SCI论文130余篇,他引7000余次,H指数51,5篇论文入选ESI高引论文。高群,北京师范大学环境学院副教授,主要从事土壤微生物学研究。相关研究成果在PNAS、Nature Communications(2篇)等国际期刊发表高质量SCI论文40篇,引用1200余次,H指数21。授权国家专利2项。荣获中国微生物生态青年科技创新优秀奖,入选中国科协青年人才托举工程及中国科协“未来女科学家计划”。01背景土壤有机碳(SOC)的温度敏感性(Q10)是调控土壤-气候反馈的关键...
  • 点击次数: 0
    2025 - 09 - 04
    土壤中隐藏着一种特殊的"身份证"——氨基糖,它能准确告诉我们土壤中微生物的活动痕迹。栢晖作为一家专业检测团队,我们每天都要处理几十份土壤样品,很多科研工作者对氨基糖检测有一些疑问。今天我们就一起看看吧~为什么氨基糖检测如此重要?土壤氨基糖是一类含有氨基和羟基的糖类化合物,主要来源于微生物细胞壁的残留物。它们就像微生物在土壤中留下的"指纹",具有三大独特价值:稳定性高:能在土壤中长期保存,不易降解来源明确:不同氨基糖代表不同微生物来源(如真菌/细菌)指示性强:通过各组分的比值能反映微生物群落变化常见的四种氨基糖各司其职:氨基葡萄糖:主要来自真菌氨基半乳糖:细菌和部分真菌来源胞壁酸:细菌特有标志物氨基甘露糖:辅助判断微生物群落结构解密GC-MS检测全流程在栢晖实验室,我们采用气相色谱-质谱联用技术(GC-MS)进行氨基糖检测,整个过程犹如一场精密的"分子侦探"行动:第一步:酸水解破壁称取0.5-1.0g土样,加入6mol/L盐酸,在105℃烘箱中水解8小时。这个步骤就像打开微生物的"保险箱",将结合态的氨基糖释放出来。第二步:多重净化除杂通过旋蒸、pH调节、离心等步骤去除干扰物。特别是采用甲醇溶解和氮吹浓缩,确保目标物质纯度。这个阶段堪称实验成败的关键,我们的技术员需要像"分子厨师"一样精准把控每个参数。第三步:衍生化处理加入衍生试剂后,在80℃水浴中进行两步衍生反应。这一步让氨基糖"穿上检测外衣",变得容易被仪器识别。实验记录显示,衍生时间相差5分钟就可能导致10%以上的结果偏差。第四步:GC-MS分析将处理好的样品注入气相色谱-质谱联用仪,通过保留时间和特征离子进行定性与定量分析。我们的仪器可以检测到ppb级别的氨基糖含量,灵敏度堪比"分子显微镜...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务