028-8525-3068
新闻动态 News
News 行业新闻

区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

日期: 2021-08-20
标签:

标题:Soil carbon persistence governed by plant input and mineral protection at regional and global scales

论文idhttps://doi.org/10.1111/ele.13723


原名:Soil carbon persistence governed by plant input and mineral protection at regional and global scales

译名:区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

期刊:Ecology Letters

IF:8.665

发表时间:2021.03.11

第一作者:陈蕾伊

通讯作者:杨元合

主要单位:中国科学院植物研究所


摘要

阐明影响土壤有机质(SOM)持久性的潜在过程是预测土壤碳-气候反馈的前提。然而,大地理尺度上植物碳(C)输入调控多层土壤SOM存留的潜在作用仍然不清晰。基于在青藏高原开展的大尺度土壤放射性碳(Δ14C)测定,我们发现尽管表土层Δ14C与气候、矿物性质和SOM化学组成有重要的联系,植物C输入是造成表层土壤C不稳定的主要贡献者。与之相反,铁铝氧化物和阳离子的矿物保护在深层土壤SOM留存中更为重要。这些区域性的观测结果得到了全球土壤放射性碳数据库(ISRaD)的全球整合结果的证实。我们的研究结果阐明了植物C输入对不同土壤层SOM持久性的差异化影响,为模型更好地预测变化环境下多层土壤的C动态提供了新见解。


研究背景

土壤是陆地生物圈中最大的碳储量,在全球碳循环中具有举足轻重的地位。土壤碳的微小损失也可能强烈地影响大气二氧化碳(CO2)浓度,并触发对气候变暖的潜在正反馈。由于对土壤SOM的稳定和不稳定机制认识不足,有关土壤C命运的预测模型仍然存在很大不确定性。曾有报道表示地球系统模型高估了土壤C周转率超过6倍,部分原因是这些模型缺乏对SOM稳定机制的完整描述。因此,要准确预测土壤C动态及其对气候变暖的潜在反馈,就必须深入了解大地理尺度上SOM持久存在的潜在机制。

放射性碳(14C)是研究不同时间尺度碳动力学的有效工具。土壤放射性碳含量已被广泛认可用以表征SOM持久性。基于14C,先前的研究已经提出了影响SOM稳定或不稳定的多种因素。其中,气候通常被视为一个重要的调控因素,例如,冻结温度和水淹条件有助于SOM的长期储存。除了气候调节外,由于SOM内在的化学顽抗性,SOM性质也可以通过选择性保护来调节土壤C动态,并且矿物-有机复合体的形成能抑制SOM分解。此外,以凋落物和根际沉积物形式的植物C输入会诱导激发效应(植物C输入驱动微生物对SOM的消耗),可能不利于SOM的长期留存。然而,与前三个因素相比,在广泛的地理尺度上,植物C输入在调节SOM持久性中的潜在作用仍不清楚。植物C输入的潜在作用和其他因素的交互作用可能会沿着土壤剖面发生变化,而目前缺乏关于探索植物C输入在不同土壤深度以及与其他因素之间的相对重要性的实证研究。


研究内容

本研究利用青藏高原2200km草原样带30个采样点的样品,测定了土壤表土(0-10cm)和底土(30-50cm)的放射性碳含量。为了探索广泛地理尺度上SOM持久性的主要驱动因素,我们综合了气候和植物C输入数据,并测定了与两层土壤矿物保护和SOM化学组成相关的变量。利用国际土壤放射性碳数据库(ISRaD)的数据,我们进一步评估了全球范围内SOM持久性的土壤深度依赖调控的普遍性。我们假设两个土层对SOM储存的主要控制因素可能不同,气候和植物C输入主导了表土,而底土则受矿物保护主导。


主要结果

01
土壤Δ14C的空间格局及其控制因素

土壤Δ14C在两个土层间表现出明显的空间分布格局。

表层土壤 Δ14C值由青藏高原东部向西部呈下降趋势 (图.1a)。同样地,表土的植物C输入和SOCD也表现出从东向西的下降趋势(图.1c、e),而连二亚硫酸根萃取的 Fe/Al 和可交换的 Ca2+ 与 SOC和HIX 的摩尔比则表现出由东向西上升的趋势(图.c,、e)。结果表明,Δ14C值较高的土壤,植物C输入量和SOCD输入量较高,而矿物保护和腐殖化SOM较低。

底土Δ14C范围为−573.5‰至−41.3‰(图.1b),平均比表土低7倍。此外,与表土相比,底土Δ14C没有表现出明显的空间模式。底土Δ14C仅与Fe+ Ald和SOC、和HIX的摩尔比呈负相关。底土Δ14C与植物C输入或土壤 SOCD无显著相关性(图. 1g、h)。

区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

1.青藏高原草地土壤放射性碳丰度的空间分布(Δ14C,a-b),植物C输入(c-d)和土壤SOC密度(SOCD,e-f)及其与表土和底土中Δ14C(g-h)的关系。表土的植物C输入量估计为地上净初级生产力(ANPP)和分配到0-10cm(BNPP0-10)的地下净初级生产力之和;底土的植物C输入估计为30–50 cm(BNPP30-50)的BNPP。背景图代表了整个研究区域的海拔高度。


02
区域和全球尺度上对土壤Δ14C主导控制

前面所涉及的四种因素和土壤Δ14C有着显著相关性,但控制植物特性的作用后,表层土壤Δ14C与气候、矿物性质和SOM成分的相关系数分别下降了87.8% 、68.4% 和115.0% (图. 2a)。相比之下,植物特性,尤其是NDVI和EVI,总是与表土Δ14C显著相关,即使是在控制了其他三种因素的情况下也是如此。与表土相反,底土Δ14C仅与矿物性质和HIX显著相关。此外,Feo+Alo和Mgexe与SOC的摩尔比是与底土Δ14C显著相关的唯二变量,即使是在控制了气候、植物C输入和SOM化学成分的作用后(图. 2b)。


 区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

2. 土壤放射性碳丰度的偏相关分析(Δ14C)以及导致表土和底土中SOM稳定和不稳定的四种因素。最外圆表示与土壤相关的因子(即气候(CL)、植物C输入(PL)、矿物保护(MI)和SOM化学组成(CO)与Δ14C的相关性检验。



图3a的SEM分析表明,植物C输入是最终模型中的单一直接控制,对表土Δ14C有较强的正效应。气候通过对植物C输入的正效应对表土Δ14C实现间接控制。相应地,图3b的SEM分析表明Δ14C主要直接受矿物性质控制,而气候和植物C输入对土壤Δ14C空间变异的影响较小。

区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

3结构方程模型(SEM)揭示了气候、植物C输入、矿物保护和SOM化学组成对土壤放射性碳丰度的直接和间接影响(Δ14C)及其标准化的直接和间接影响(a)表土的SEM和(b)底土的SEM。单头箭头:因果关系的假设方向;红色和蓝色实心箭头:积极和消极的关系;灰色虚线箭头;不重要的关系;红色和蓝色箭头的宽度与关系的强度成正比;箭头旁的数字;标准化路径系数。


全球综合结果显示,表土Δ14C与植物C输入(图. 4a-d)和气候因子(图. 4a-d)紧密相关。与气候和植物C输入相比,矿物质与SOC的比值与深层土壤中的Δ14C密切相关(图. 4e–h)。这些结果强调了在青藏高原草原上观测到的土壤碳持久性的深度依赖控制可以推广到全球范围。

区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

4全球范围内的表土(绿点)和深层土壤(橘色)中土壤碳丰度(Δ14C)与植物C输入和矿物保护的相关性。植物C输入变量包括(a)标准化植被指数(NDVI),(b)增强植被指数(EVI),(C)叶面积指数(LAI)和(d)净初级生产力(NPP)。矿物保护变量包括(e)dithionite-extractable连二亚硫酸钠可提取铁(Fed),(f)草酸盐可提取铁(Feo),(g)连二亚硫酸钠可提取铝(Ald)和(h)草酸盐可提取铝(Alo)与SOC的摩尔比。


总结

本研究区域观测的结果和全球综合结果一致地证明,土壤层之间土壤碳持久性的主要决定因素是不同的。首次量化了植物C输入相对于其他因素的相对重要性。尽管表土Δ14C与多种因素显著相关,但植物C输入主要控制表层土壤碳的长期储存,而矿物保护则主要在底土起作用。本研究利于加深对环境变化下土壤C动态的了解,有助于C-气候反馈模型的完善。

  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 01 - 09
    文献解读原名:Decadal application of mineral fertilizers alters the molecular composition and origins of organic matter in particulate and mineral-associated fractions译名:十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成和来源期刊:SBBIF:9.8发表时间:2023.07第一作者:Zhichao Zou摘要背景:长期矿质施肥对土壤有机质(SOM)的数量、质量和稳定性的影响仍不明确。方法:通过结合四种生物标志物(自由与结合态脂类、木质素酚和氨基糖),研究中国北方农田在10年矿质施肥下(400 kg N ha−1 yr−1, 120 kg P ha−1 yr−1 和 50 kg K ha−1 yr−1)的SOM的分子组成、分解和来源。我们关注于两个差异化的SOM组分:颗粒态有机质(POM)和矿质结合态有机质(MAOM)。结果:尽管施肥对全土SOC的影响有限,但导致MAOM中SOC增加23%,并且改变了其组成和来源。施肥使POM中植物源的萜类化合物增加46%,MAOM中长链脂类(≥20)增加116%,但是降低了POM中54%的短链脂类(结论:矿质施肥通过改变温带农业生态系统中矿物-有机复合体的分子组成和固存,增加SOM的稳定性和持久性。研究背景SOM能够维持土壤肥力、促进土壤水分存留和有机碳(SOC)固存,对农业生态系统的功能的发挥至关重要。在典型的农田,大量矿质肥料的输入增加了作物生产力,导致大量的碳(C)通过残体、根系及其分泌物进入土壤,随后改变了SOM周转。然而,我们对SOC稳定和固存对营养施肥的响应方向和程度的基础理解仍然不明确。之前的研究报道了农业生态系统中施肥管理导致更高、中性以及甚至更低的SOC水平。在集...
  • 点击次数: 0
    2025 - 01 - 02
    文献解读原名:Temperature-dependent soil storage: Changes in microbial viability and respiration in semiarid grasslands译名:随温度变化的土壤储存:半干旱草原微生物活力和呼吸作用的变化期刊:Soil Biology and BiochemistryIF:9.8线上发表日期:2024年12月发表日期:2025年3月通讯作者:田建卿(中国科学院植物研究所)亮点(1)相比于-20℃,在4℃下储存土壤细胞的存活率更高。(2)在 4 °C 下温和解冻 3 天可优化冻土中的细胞活力。(3)土壤呼吸对储存的响应取决于土壤类型。背景土壤微生物是生物地球化学循环的关键引擎,也是土壤有机碳 (SOC) 分解和稳定的关键驱动因素。理想情况下,研究人员应在取样后立即对新鲜土壤进行大多数微生物活动和微生物介导的土壤生物地球化学分析,然而,由于实际限制,在低温下储存土壤是土壤微生物学研究中的常见做法,可能会影响微生物活力和微生物介导的呼吸作用,几十年来,不适当的储存条件导致了已发表的研究中相互矛盾的结论。目前对储存过程中活微生物参数的变化和微生物介导的呼吸仍然缺乏了解。材料与方法(1)于2022年8月和2023年5月在从内蒙古草原生态系统研究站(IMGERS;116◦42′E,北纬43°38′,海拔约1260米)。中国内蒙古自治区采集了4种类型的土壤,包括大针茅(S.grandis)、羊草(L.chinensis)、西林河流域草甸(湿地)和浑善达克沙地(沙质)土壤。之后将4种类型的土壤样本分别在4℃和 -20℃下储存 0、5、40 和210天。对于在-20℃下保存的土壤,作者采用了两种解冻方法:室温下直接解冻和4 ℃下温和解冻(gentle thaw...
  • 点击次数: 0
    2024 - 12 - 06
    # 栢晖 #—特色检测指标—土壤、植物酶活检测氨基糖、PLFA及其同位素、磷组分木质素酚、CUE、有机氮组分、有机酸氨基酸、微生物量碳氮磷、同位素等苯多羧酸、红外光谱、微生物多样性等其他土壤、植物、水体等常规检测指标均可测定欢迎联系下方相关工作人员详细沟通
  • 点击次数: 0
    2024 - 11 - 29
    文献解读原名:Rhizosphere as a hotspot for microbial necromass depositioninto the soil carbon pool译名:根际是微生物残体进入土壤碳库的热点区期刊:Journal of EcologyIF: 5.3发表日期:2024.11.15第一作者:汪其同背景森林土壤是陆地生态系统最大的有机碳(SOC)库,高效发挥森林土壤碳汇功能是实现“双碳”战略目标的重要途径之一。相应地,科学认识森林土壤固碳过程与调控机制已成为当前森林生态学、土壤学领域重要的前沿基础科学问题与林业碳汇功能适应性管理的核心现实需求。近年来不断涌现的证据表明,微生物通过合成代谢而迭代积累的微生物残体很大程度上主导了SOC的长期积累和固持。其中,由于根源C持续输入在根系周围的根际微域形成了一个独特而又典型的微生物热点区,并伴随着更快的微生物生长和更强的微生物代谢活性,进而导致根际区微生物残体对长期SOC积累贡献能力比非根际区更为突出和明显。然而,目前大多研究通常将根际和非根际土壤视为一个均质有机体,而缺乏针对根际区SOC形成过程与稳定性机制的专一性试验研究,导致根际区土壤碳动态过程及其生态重要性在很大程度上未被探索和了解,已成为森林土壤碳汇功能变化认知最少且极为薄弱的关键环节之一。基于此,中国科学院成都生物研究所尹华军研究团队通过系统收集青藏高原典型高寒针叶林39个样点的根际和非根际土壤样品(图1),量化了根际和非根际土壤中有机碳和氨基糖的浓度,并通过计算根际相对于非根际土壤中增加的氨基糖与增加的有机碳的比例(RAS/SOC),评估了微生物残体对根际SOC积累的贡献程度。同时测定了根际土壤养分浓度和微生物生理性状,以揭示多变环境下根际微生物残体对SOC积累贡献的潜在微生物调控机制。图1  39个高寒针叶林采样点分布图我们假设:(1...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务