028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

日期: 2022-04-20
标签:

原名:Resource limitation and modeled microbial metabolism along an elevation gradient

译名:微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

期刊:Catena

IF:5.198

发表时间:2021.10

第一作者:Zhang, SH


摘要

土壤微生物对全球碳—气候反馈具有重要影响,同时其代谢活性通常受到养分有效性的限制。海拔变化对土壤微生物群落具有重要影响,但其对微生物资源限制的影响及其对碳动态的调控机制尚未阐明。本研究中,我们在秦岭(Qinling Mountains)沿海拔梯度从1308 – 2600 m之间设置了6个梯度进行土壤取样,通过测定和计算胞外酶化学计量比并模拟微生物代谢以揭示土壤微生物沿海拔梯度的资源限制特征和主要代谢过程(如:有机碳分解速率和微生物呼吸速率)的变化规律。还测定了年平均气温(MAT)、年平均降水量(MAP)、土壤总C:N:P比值、土壤有效养分以及微生物生物量等环境指标。结果表明:该地点的土壤微生物均受到N限制,并且随着海拔升高,土壤微生物N限制显著增强。随着海拔升高,有机碳分解速率(M)和微生物呼吸速率(Rm)显著降低。这表明,由海拔变化引起的温度升高可能缓解了微生物N限制并导致土壤C释放增加。冗余分析(RDA)表明,MAT和土壤养分化学计量比(尤其是DOC:TDN)是解释土壤微生物资源限制特征和主要代谢过程沿海拔梯度变化的主要环境因子。综上,本研究表明,由于土壤C:N比值的变化,高海拔地点的微生物遭受更强的N限制,可能有利于土壤有机碳积累,该结果为气候变暖背景下微生物介导的土壤C释放过程提供了见解。

研究背景

温度是微生物代谢过程的主要驱动因子并决定了微生物利用养分的能力。因此,了解微生物过程如何响应温度变化,对于预测气候变化对微生物养分获取的影响具有重要意义。随着海拔升高,环境温度下降,因此沿海拔梯度取样有助于阐明微生物养分获取和代谢特征对温度变化的响应机制。尽管一些研究已经表明微生物特性对海拔引起的温度变化响应十分敏感,而这种响应直接受到海拔变化引起土壤养分有效性变化的影响。但海拔变化对微生物资源限制和代谢特征的具体影响机制还未阐明。为了理解微生物资源的限制和微生物代谢过程,并揭示其沿海拔梯度变化的潜在机制,我们在中国太白山(Taibai Mountain of China)进行了沿海拔梯度的土壤取样。并提出以下假设:1.该地区的土壤微生物可能受到N和P限制的影响,且N和P限制相对影响可能随着海拔变化而变化;2.土壤微生物资源限制和主要微生物过程可能受到气候因素的间接影响,但主要受有效养分和微生物生物量的直接影响。

主要结果

1. 植物特性和土壤理化性质沿海拔的变化

植物特性和土壤理化性质在不同海拔梯度具有显著差异。具体地,植物叶片和根组织C、N和P浓度在中间海拔梯度最高,但C:N:P计量比沿海拔梯度没有显著变化。高海拔梯度的土壤C:N比值尤其是DOC:TDN显著高于低海拔区域,土壤湿度(SM)随海拔升高而增加。


2. 土壤胞外酶化学计量比微生物资源限制

结果表明,ln(BG):ln(NAG + LAP)和ln (BG):ln(AP) 比值沿海拔梯度显著降低。但ln(NAG + LAP):ln(AP)比值显著增加(图2a, 2b和2c)。并且,所有样点均分布于图3a 的1:1线之下,图3c 的1:1线之上,表明该研究区域的土壤微生物普遍受到强烈N限制(图3c)。海拔对微生物代谢特征具有显著影响(图3d和3e)。向量长度(Vector lengths与微生物C限制程度正相关)在1308 m处为1.47 ± 0.1,在2292 m处为1.35 ± 0.1。向量角度(Vector angles)均小于45°,并沿海拔梯度显著降低,表明微生物N限制沿海拔梯度增强。

文献解读| 微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

图2 土壤胞外酶化学计量沿海拔梯度的变化规律

文献解读| 微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

图3 土壤微生物沿海拔梯度的资源限制变化规律


3. 有机碳降解和微生物呼吸模拟

结果表明,有机碳降解速率(M)随海拔升高而显著降低,微生物呼吸速率(Rm)则是先增加再降低(图4)。

文献解读| 微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

图4 模拟微生物代谢过程沿海拔梯度的变化规律


4. 环境变量共同调节微生物资源限制、有机碳降解速率和微生物呼吸速率

有机碳降解速率和微生物呼吸速率在海拔梯度上与资源有效性显著相关。具体地,平均向量长度和向量角度随着SOC降解速率和微生物呼吸速率升高而增加(图5)。RDA分析表明,土壤养分化学计量比(总养分和有效养分)对土壤微生物资源限制特征变化的贡献大于气候因子(MAT和MAP)和植物叶片和根组织化学计量比的贡献。特别地,土壤有效养分比值比总养分比值的影响更大。RDA分析还表明,土壤有效养分比值和气候因子可以解释大部分有机碳降解速率和微生物呼吸速率的变异。

文献解读| 微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

图5 微生物代谢过程与资源限制特征之间的关系

文献解读| 微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

图6 环境变量对微生物资源限制特征变化的贡献

文献解读| 微生物资源限制和模拟代谢活性沿海拔梯度的变化规律

图7 环境变量对微生物代谢过程变化的贡献

结论

随着海拔升高,土壤微生物N限制增强,同时有机碳降解速率和微生物呼吸速率下降。该结果表明在全球变暖背景下,高海拔地区土壤微生物N限制可能得到缓解并最终增加土壤C损失。土壤C:N比值尤其是DOC:TDN是预测土壤微生物N限制以及有机碳降解速率和微生物呼吸速率的关键因子,该结果表明土壤微生物N限制可能通过改变土壤C、N平衡进而决定土壤C动态。因此,在全球气候变化背景下,我们的研究强调了需要将酶介导的微生物降解过程作为改进土壤碳动态预测模型的一种手段。



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 10 - 10
    13C固体核磁共振方法简述为了提高固体核磁共振测定的精确度,土壤样品在进行核磁共振分析前先用氢氟酸(HF)进行预处理。预处理方法如下:称量8克土壤样品于100mL塑料离心管中,加50mLHF(体积分数10%)溶液,摇床上振荡1h(25℃,200r/min),离心机上3800 r/min离心5min,弃去上清液,残余物继续用HF溶液处理。共重复处理8次,摇床时间依次是:第1-4次1h,第5-7次12h,最后1次24h。处理过后的残余物用蒸馏水清洗后以除去其中的HF溶液,方法如下:加50mL蒸馏水,振荡10min,离心5min(3800r/min),去掉上清液,整个过程重复4次。残余物在40℃的烘箱中烘干,过60目筛后置于密室袋中,备NMR上机测定。数据示例点击放大查看红外光谱方法简述土壤样品的光谱特征使用傅立叶变换红外吸收光谱进行分析。将干燥的样品与干燥的KBr(样品:KBr = 1:80的比例)在玛瑙研钵中汇合均匀并研磨至粉末状(粒度 < 2 μm),压成透明薄片。用傅立叶变换红外光谱仪(Spectrum 100; PerkinElmer, MA, USA)扫描测定并记录其光谱。光谱数据进一步用Omnic 8.3软件(Thermo Nicolet Corporation, USA)分析。根据前人的研究,我们选择了4个波峰区域来分析土壤C官能团特征并计算峰面积比:alkyl-C(2985 - 2820 cm-1);aromatic C=C(1800 - 1525 cm-1); O-alkyl-C(1185 - 915 cm-1) and aromatic CH(855 - 740 cm-1)(Pengerud et al., 2013)。基于峰面积比,我们计算了土壤SOM的疏水性指数(HI,alkyl-C/SOC)和芳香度指数(AI,alkyl-C/O-alkyl-...
  • 点击次数: 0
    2025 - 09 - 29
    BAIHUI文献解读原名:Heavy metal contamination threats carbon sequestration of paddy soils with an attenuated microbial anabolism.译名:重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱。期刊:GeodermaIF:6.6发表日期:2025.8第一作者:熊丽 江西省农业科学院土壤与肥料及资源环境研究所(熊丽课题组)01背景耕地中的土壤有机碳(SOC)不仅是土壤肥力和生产力的基础,更在缓解气候变化中发挥着重要作用——仅表层1米的土壤中就储存着全球SOC总量的近10%。SOC的生态功能主要取决于其循环转化与长期存留能力,而这些过程极易受到重金属污染等环境压力因素的显著影响。近百年来人类活动的密集开发,使农田土壤重金属污染日益严重,已成为威胁土壤健康和粮食安全的全球性问题。作为土壤碳循环的主要调控者, 微生物如同“针眼”般精准调控着有机质碳的转化过程,且对重金属具有高度敏感性。因此,重金属污染对微生物介导SOC转化的影响正引发学界越来越多的关注。图1:研究区及沿县岔河13个采样点位置示意图02科学问题(1)重金属污染会降低微生物可利用碳元素(CUE)并加速生物量周转;(2)微生物合成代谢能力减弱将显著影响污染稻田土壤中有机碳的变化。03材料与方法(1)本次实地考察在自1934年开采至2020年关闭的小龙钨矿周边展开。属亚热带季风气候区,年均气温18.6℃,年均降水量1726毫米。 (2)水稻种植是该地区最主要的农业类型,采用典型的早稻-晚稻轮作制度。 (3)在河流上下游13个采样点采集土壤样本 (图1),每个采样点选取三块相邻的稻田作为三重复样本。每块稻田内设置五个2×2米样方,每个样方从表层(0-20厘米)随机采集五个直径2.5厘米的土...
  • 点击次数: 0
    2025 - 09 - 09
    原名:Aggregate size mediates the stability and temperature sensitivity of soil organic carbon in response to decadal biochar and straw amendments译名:团聚体尺寸调控长期生物炭与秸秆添加下土壤有机碳的稳定性及温度敏感性期刊:Soil Biology & BiochemistryIF:10.3发表日期:2025年9月3日BAIHUI ORGANISMS作者简介第一作者:陈雅兰,北京师范大学环境学院励耘博士后,师从孙可教授。主要从事生物炭环境地球化学行为及环境效应的研究。以第一作者在GCB、SBB、EST、CEE等期刊上发表学术论文19篇(含共一3篇),1篇封面文章,1篇入选ESI高被引论文,引用800次,H指数17。主持国家自然科学基金青年项目、博士后基金站中特别资助、博士后基金面上项目。曾获宝钢优秀学生特等奖、北京市优秀毕业生、北师大优秀博士学位论文等荣誉。通讯作者:孙可,北京师范大学环境学院教授、博士生导师,国家杰出青年基金、国家优秀青年科学基金和北京市杰出青年基金获得者。主要从事生物炭环境地球化学行为及环境效应的研究。在GCB、SBB、EST等期刊上发表高质量SCI论文130余篇,他引7000余次,H指数51,5篇论文入选ESI高引论文。高群,北京师范大学环境学院副教授,主要从事土壤微生物学研究。相关研究成果在PNAS、Nature Communications(2篇)等国际期刊发表高质量SCI论文40篇,引用1200余次,H指数21。授权国家专利2项。荣获中国微生物生态青年科技创新优秀奖,入选中国科协青年人才托举工程及中国科协“未来女科学家计划”。01背景土壤有机碳(SOC)的温度敏感性(Q10)是调控土壤-气候反馈的关键...
  • 点击次数: 0
    2025 - 09 - 04
    土壤中隐藏着一种特殊的"身份证"——氨基糖,它能准确告诉我们土壤中微生物的活动痕迹。栢晖作为一家专业检测团队,我们每天都要处理几十份土壤样品,很多科研工作者对氨基糖检测有一些疑问。今天我们就一起看看吧~为什么氨基糖检测如此重要?土壤氨基糖是一类含有氨基和羟基的糖类化合物,主要来源于微生物细胞壁的残留物。它们就像微生物在土壤中留下的"指纹",具有三大独特价值:稳定性高:能在土壤中长期保存,不易降解来源明确:不同氨基糖代表不同微生物来源(如真菌/细菌)指示性强:通过各组分的比值能反映微生物群落变化常见的四种氨基糖各司其职:氨基葡萄糖:主要来自真菌氨基半乳糖:细菌和部分真菌来源胞壁酸:细菌特有标志物氨基甘露糖:辅助判断微生物群落结构解密GC-MS检测全流程在栢晖实验室,我们采用气相色谱-质谱联用技术(GC-MS)进行氨基糖检测,整个过程犹如一场精密的"分子侦探"行动:第一步:酸水解破壁称取0.5-1.0g土样,加入6mol/L盐酸,在105℃烘箱中水解8小时。这个步骤就像打开微生物的"保险箱",将结合态的氨基糖释放出来。第二步:多重净化除杂通过旋蒸、pH调节、离心等步骤去除干扰物。特别是采用甲醇溶解和氮吹浓缩,确保目标物质纯度。这个阶段堪称实验成败的关键,我们的技术员需要像"分子厨师"一样精准把控每个参数。第三步:衍生化处理加入衍生试剂后,在80℃水浴中进行两步衍生反应。这一步让氨基糖"穿上检测外衣",变得容易被仪器识别。实验记录显示,衍生时间相差5分钟就可能导致10%以上的结果偏差。第四步:GC-MS分析将处理好的样品注入气相色谱-质谱联用仪,通过保留时间和特征离子进行定性与定量分析。我们的仪器可以检测到ppb级别的氨基糖含量,灵敏度堪比"分子显微镜...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务