028-8525-3068
新闻动态 News
News 行业新闻

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

日期: 2022-05-20
标签:

文献解读


译名:氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

原名:More soil organic carbon is sequestered through the mycelium-pathway than through the root-pathway under nitrogen enrichment in an alpine forest

期刊名称:Global Change Biology

影响因子: 10.151 (2020)

第一作者:朱晓敏,张子良

通讯作者:尹华军


01

摘要


植物根系与相关菌根真菌在调控森林土壤碳(C)循环中发挥着重要作用。然而,再氮(N)沉降加剧的条件下,根系和外生菌根菌丝是否以及如何差异化地影响高寒森林土壤有机碳(SOC)积累尚不清楚。基于此,以外生菌根(ECM)高度共生的亚高山针叶林--云杉(Picea asperata)为试验对象,采用内生长管技术区分根系和菌丝作用(图 1右),区分和量化了氮添加(0 vs.25kg N ha-1 yr-1)下根系/菌丝途径对森林SOC积累的贡献幅度、方向与潜在作用机制。研究发现:无N添加处理下,根系途径增加SOC,而菌丝途径减少SOC。相对于无N添加处理而言,氮添加促进根系途径对SOC积累的正效应,SOC从18.02 mg C g-1增加至20.55 mg C g-1;而氮添加抵消了菌丝途径对SOC积累的负效应,SOC减少量从5.62 mg C g-1下降至0.57 mg C g-1。换言之,氮添加诱导的根系途径和菌丝途径的SOC增量分别为1.62~2.21 mg C g-1 和 3.23~4.74 mg C g-1。菌丝途径对SOC增加的贡献高于根系途径的主要原因是菌丝途径具有更高效运转的微生物C泵(MCP),氮添加下菌丝途径介导的微生物残体C增量占SOC增量的比例可达80%以上,而这一比例在根系途径中仅为54%左右。氮添加下菌丝途径具有更强的真菌代谢活性以及真菌残体C与土壤矿物结合能力是菌丝途径MCP高效运转的重要原因。总之,我们的研究强调了在氮沉降不断加剧背景下,森林外延菌丝及其介导的菌丝际C过程在调控高寒森林稳定性SOC的形成和积累中扮演着极其关键的角色。


02

研究背景

土壤是森林生态系统最大的碳(C)汇,其C储量的微弱变化都将对全球气候和碳循环产生深远影响。相应地,森林土壤C汇功能维持与优化管理已成为缓解全球气候变化压力、实现碳中和的重要途径之一。作为链接植物-土壤的核心纽带,根系除了作为吸收养分和水分的门户外,还通过分泌、周转与菌根共生等一系列生命活动深刻调控土壤C循环诸多关键过程,是深入理解土壤C源/汇变化与高效发挥土壤固碳功能的关键环节。地处高纬度/高海拔地区的高寒针叶林通常与外生菌根(ECM;简称菌根)共生,并通过产生大量的外延菌丝在土壤中形成庞大、功能多样的菌丝网络系统。树木将大量光合C分别通过根系和菌丝途径转移到土壤中,在土壤中形成了两个独特的微生物热点区,即“根际”和“菌丝际”(图1a)。由于两种途径的C源在输入数量和性质、周转以及留存上的差异,它们可通过不同的作用途径与机理来调控土壤C-养分循环过程,加剧了森林根系--土壤--微生物互作过程的复杂性和不可预知性。然而,尽管菌根在调控土壤C循环中扮演着重要角色已成为广泛共识,但现有研究更多地将根系和外生菌根外延菌丝作用视为一个整体考虑,缺乏对叠加环境变化后根系/菌丝途径调控土壤C形成、积累和稳定效应差异的细微辨识与区分,极大地限制了对多变环境变化下森林菌根活动介导的土壤碳汇效应与调控机制的深入认识。

为此,本研究为此,中科院成都生物研究所森林生态过程与调控项目组尹华军团队以外生菌根(ECM)高度共生的亚高山针叶林--云杉(Picea asperata)为试验对象,采用内生长管技术区分根系和菌丝作用(图 1b),区分和量化了氮添加(0 vs.25kg N ha-1 yr-1)下根系/菌丝途径对森林SOC积累的贡献幅度与方向。在此基础上,借助生物标志物(长链脂肪酸、木质素酚类和氨基糖)分析技术,分析了两种途径下SOC分子组成(植物源C与微生物源C),精准量化和评估了两种途径下N添加诱导的微生物碳泵(Microbial carbon pump,MCP)能效变化,即N诱导的微生物残体C增量占SOC增量的比例。同时,结合土壤微生物群落结构、胞外酶活性以及SOC物理-化学稳定性分析,辨识了氮沉降下根系/菌丝两种途径介导的SOC储量和分子组成变化的潜在调控机制。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图1根系/菌丝途径对土壤碳-养分影响示意图(a)与原位内生长管试验设计示意图(b)。


03

主要结果

1) 氮沉降通过根系和菌丝途径使SOC含量增加了4.85~6.95 mg C g-1,其中菌丝途径贡献了约68%的SOC增量(3.23~4.74 mg C g-1),表明了外生菌根主导的森林中菌丝途径对N添加诱导的SOC增加具有重要作用(图 2)。导致根系途径和菌丝途径对土壤SOC积累的贡献差异可能源于氮添加下两种途径的SOC物理、化学保护机制的响应幅度有所不同,表现为氮添加下菌丝途径黏-粉粒组分C和Fe/Al氧化物的增幅均高于根系途径,即菌丝途径具有更高的SOC物理-化学稳定性(图 3a, b,图4)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 2 氮添加诱导的根系/菌丝途径SOC含量变化。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 3氮添加下根系/菌丝途径不同土壤颗粒组分(大团聚体:2000 μm ~250 μm, 微团聚体:250 μm~53μm, 黏-粉粒: < 53μm)有机碳变化 (a)。氮添加诱导的微团聚体C与黏-粉粒C增量与总SOC增量的回归分析(b)。氮添加下两种途径不同土壤颗粒组分有机碳分子组成(植物源C vs. 微生物残体C)的变化(c)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 4 氮沉降对高寒针叶林根系途径和菌丝途径有机碳化学保护作用的影响。

2) 无论是在根系途径还是菌丝途径,微生物残体C对氮添加诱导的SOC增量的贡献均大于植物源C,根系途径微生物残体C增量占SOC增量的56~58%,而菌丝途径微生物残体C增量占SOC增量的65~80%)(图 5),表明微生物碳泵能效在不同微生物热点区(如,根际、菌丝际)可能存在显著差别,进而影响稳定性SOC的形成和积累。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 5 氮添加下根系途径(a, b)和菌丝途径(c, d)植物源C和微生物残体C含量(mg g-1)的变化以及其对土壤有机碳增量的相对贡献(植物源或微生物残体C增量/SOC增量,%)。数值表示为两种途径下不施氮处理与施氮处理之间的差值。

3) 真菌残体C对稳定性有机碳的积累起到至关重要的作用。菌丝途径真菌残体碳增量对SOC增量的贡献约为根系途径的2倍(图 5)。线性相关分析表明,两种途径下真菌残体贡献的差异可能与菌丝途径具有更高的真菌代谢活性以及更强的真菌残体C与土壤矿物结合能力有关(图 6)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 6 根系/菌丝途径下细菌/真菌残体C增量对氮添加下SOC增量的相对贡献与细菌/真菌生物量、NAG酶活性的线性回归分析(a-c)。黏-粉粒组分中真菌残体C增量对其SOC增量的贡献与总土中真菌残体C增量对其SOC增量的贡献的线性回归分析(d)。


04

重要结论

基于上述结果,本研究提出了一个概念框架描述氮沉降增加背景下外生菌根主导森林植物根系、外延菌丝及其介导的相关生物地球化学过程在土壤有机碳固持中的作用效应(图 7)。研究结果表明氮沉降增加背景下菌丝途径可能通过微生物碳泵的高效运转促进土壤有机碳积累,强调了菌丝及其介导的菌丝际C过程在调控森林土壤有机碳动态中发挥着至关重要的作用。上述概念框架为理解高寒针叶林SOC动态响应全球环境变化(如N沉降、CO2浓度、温度、降水格局的变化)提供了新见解,并推动了多变环境下森林菌根活动介导的生物地球化学效应对土壤有机碳形成、积累和稳定性影响的评估。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 7 氮沉降增加背景下外生菌根主导森林根系/菌丝对土壤有机碳积累(g m-2 yr-1)的相对贡献。PLRC: 植物源C; BRC: 细菌残体C; FRC: 真菌残体C; UNIC: 未识别碳组分。图中加号之后的数值表示相对于不加氮处理而言,氮添加诱导的SOC碳库含量及植物源/微生物源C含量的增量。括号内的百分比表示N诱导的植物源/微生物源C增量对SOC增量的贡献大小。



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 01 - 09
    文献解读原名:Decadal application of mineral fertilizers alters the molecular composition and origins of organic matter in particulate and mineral-associated fractions译名:十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成和来源期刊:SBBIF:9.8发表时间:2023.07第一作者:Zhichao Zou摘要背景:长期矿质施肥对土壤有机质(SOM)的数量、质量和稳定性的影响仍不明确。方法:通过结合四种生物标志物(自由与结合态脂类、木质素酚和氨基糖),研究中国北方农田在10年矿质施肥下(400 kg N ha−1 yr−1, 120 kg P ha−1 yr−1 和 50 kg K ha−1 yr−1)的SOM的分子组成、分解和来源。我们关注于两个差异化的SOM组分:颗粒态有机质(POM)和矿质结合态有机质(MAOM)。结果:尽管施肥对全土SOC的影响有限,但导致MAOM中SOC增加23%,并且改变了其组成和来源。施肥使POM中植物源的萜类化合物增加46%,MAOM中长链脂类(≥20)增加116%,但是降低了POM中54%的短链脂类(结论:矿质施肥通过改变温带农业生态系统中矿物-有机复合体的分子组成和固存,增加SOM的稳定性和持久性。研究背景SOM能够维持土壤肥力、促进土壤水分存留和有机碳(SOC)固存,对农业生态系统的功能的发挥至关重要。在典型的农田,大量矿质肥料的输入增加了作物生产力,导致大量的碳(C)通过残体、根系及其分泌物进入土壤,随后改变了SOM周转。然而,我们对SOC稳定和固存对营养施肥的响应方向和程度的基础理解仍然不明确。之前的研究报道了农业生态系统中施肥管理导致更高、中性以及甚至更低的SOC水平。在集...
  • 点击次数: 0
    2025 - 01 - 02
    文献解读原名:Temperature-dependent soil storage: Changes in microbial viability and respiration in semiarid grasslands译名:随温度变化的土壤储存:半干旱草原微生物活力和呼吸作用的变化期刊:Soil Biology and BiochemistryIF:9.8线上发表日期:2024年12月发表日期:2025年3月通讯作者:田建卿(中国科学院植物研究所)亮点(1)相比于-20℃,在4℃下储存土壤细胞的存活率更高。(2)在 4 °C 下温和解冻 3 天可优化冻土中的细胞活力。(3)土壤呼吸对储存的响应取决于土壤类型。背景土壤微生物是生物地球化学循环的关键引擎,也是土壤有机碳 (SOC) 分解和稳定的关键驱动因素。理想情况下,研究人员应在取样后立即对新鲜土壤进行大多数微生物活动和微生物介导的土壤生物地球化学分析,然而,由于实际限制,在低温下储存土壤是土壤微生物学研究中的常见做法,可能会影响微生物活力和微生物介导的呼吸作用,几十年来,不适当的储存条件导致了已发表的研究中相互矛盾的结论。目前对储存过程中活微生物参数的变化和微生物介导的呼吸仍然缺乏了解。材料与方法(1)于2022年8月和2023年5月在从内蒙古草原生态系统研究站(IMGERS;116◦42′E,北纬43°38′,海拔约1260米)。中国内蒙古自治区采集了4种类型的土壤,包括大针茅(S.grandis)、羊草(L.chinensis)、西林河流域草甸(湿地)和浑善达克沙地(沙质)土壤。之后将4种类型的土壤样本分别在4℃和 -20℃下储存 0、5、40 和210天。对于在-20℃下保存的土壤,作者采用了两种解冻方法:室温下直接解冻和4 ℃下温和解冻(gentle thaw...
  • 点击次数: 0
    2024 - 12 - 06
    # 栢晖 #—特色检测指标—土壤、植物酶活检测氨基糖、PLFA及其同位素、磷组分木质素酚、CUE、有机氮组分、有机酸氨基酸、微生物量碳氮磷、同位素等苯多羧酸、红外光谱、微生物多样性等其他土壤、植物、水体等常规检测指标均可测定欢迎联系下方相关工作人员详细沟通
  • 点击次数: 0
    2024 - 11 - 29
    文献解读原名:Rhizosphere as a hotspot for microbial necromass depositioninto the soil carbon pool译名:根际是微生物残体进入土壤碳库的热点区期刊:Journal of EcologyIF: 5.3发表日期:2024.11.15第一作者:汪其同背景森林土壤是陆地生态系统最大的有机碳(SOC)库,高效发挥森林土壤碳汇功能是实现“双碳”战略目标的重要途径之一。相应地,科学认识森林土壤固碳过程与调控机制已成为当前森林生态学、土壤学领域重要的前沿基础科学问题与林业碳汇功能适应性管理的核心现实需求。近年来不断涌现的证据表明,微生物通过合成代谢而迭代积累的微生物残体很大程度上主导了SOC的长期积累和固持。其中,由于根源C持续输入在根系周围的根际微域形成了一个独特而又典型的微生物热点区,并伴随着更快的微生物生长和更强的微生物代谢活性,进而导致根际区微生物残体对长期SOC积累贡献能力比非根际区更为突出和明显。然而,目前大多研究通常将根际和非根际土壤视为一个均质有机体,而缺乏针对根际区SOC形成过程与稳定性机制的专一性试验研究,导致根际区土壤碳动态过程及其生态重要性在很大程度上未被探索和了解,已成为森林土壤碳汇功能变化认知最少且极为薄弱的关键环节之一。基于此,中国科学院成都生物研究所尹华军研究团队通过系统收集青藏高原典型高寒针叶林39个样点的根际和非根际土壤样品(图1),量化了根际和非根际土壤中有机碳和氨基糖的浓度,并通过计算根际相对于非根际土壤中增加的氨基糖与增加的有机碳的比例(RAS/SOC),评估了微生物残体对根际SOC积累的贡献程度。同时测定了根际土壤养分浓度和微生物生理性状,以揭示多变环境下根际微生物残体对SOC积累贡献的潜在微生物调控机制。图1  39个高寒针叶林采样点分布图我们假设:(1...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务