028-8525-3068
新闻动态 News
News 行业新闻

死亡微生物的粘附性:土壤中微生物残体快速的非生物固定机制

日期: 2022-08-17
标签:




文献解读

BAIHUI

原名:Sticky dead microbes: Rapid abiotic retention of microbial necromass in soil


译名:死亡微生物的粘附性:土壤中微生物残体快速的非生物固定机制

期刊:Soil Biology and Biochemistry


IF:8.5(2021


发表时间:2020年8月14日


第一作者:   Kate M.Buckeridge


通讯作者:Kate M.Buckeridge


主要单位:

Lancaster Environment Centre, University of Lancaster, Lancaster, UK

UK Centre for Ecology & Hydrology, Lancaster, UK


死亡微生物的粘附性:土壤中微生物残体快速的非生物固定机制


01
摘要

微生物残体主导土壤有机质。最近关于残体和土壤碳储存的研究主要集中在残体的产生和稳定机制,而不是残体的固定机制。我们使用稳定同位素标记微生物残体进行土壤培养试验。结果表明,对于短期的残体固定,非生物吸附固定可能比生物固定更重要。我们证明了残体吸附固定不仅发生在矿物表面,还可能与其他残体相互作用。此外,残体化学性质能改变残体之间的相互作用,当存在酵母残体时,细菌示踪残体会保留更多。这些发现表明,除了化学稳定性之外,微生物残体的吸附和非生物相互作用及其功能特性需要在土壤固碳的背景下进一步研究。

关键词:

土壤有机质,功能特性,稳定同位素,草地牧场,碳固持,氮

02
背景

土壤有机质(SOM)是土壤健康和可持续农业的关键指标。对SOM稳定性的研究传统上侧重于植物对土壤输入的质量和数量,然而,最近的研究表明,SOM主要由死亡的微生物产物和残体主导。残体在土壤中的持留时间可能受到残体吸收固定到微生物生物量影响,但残体固定最终依赖于其吸附到土壤矿物表面形成的微团聚体。实际上,生物固定作用(微生物固定化)和非生物固定(吸附和分子相互作用)可能同时发生,但尚未有研究评估这些短期过程的相对重要性(图1)。

矿物表面可观察到微生物残体,这支持以下观点:稳定SOM的积累主要由有机-矿物吸附控制,并受矿物表面积限制。然而,实验检测到的残体并不是均匀的覆盖在矿物表面,而是以块状形态存在,这表明SOM的稳定性也可能包含有机物间的相互作用,或残体通过离子相互作用、氢键、范德华力、(部分)包埋作用和其他残体及有机质粘连(图1)。了解这两个非生物吸附过程的相对重要性对于预测SOM持留时间的上限至关重要。

微生物残体的化学性质被认为是SOM储存的不重要调节因素,因为相比不同的植物输入,其化学成分更为相似。以往关于残体化学性质和持久性的研究集中于其稳定性,并强调几丁质的固定。然而,细胞化学性质可以改变细胞间粘附率和有机-矿物吸附率,尤其是对于富含N的残体。革兰氏阳性细菌包膜在脂膜外有一层厚的交联肽聚糖层,而革兰氏阴性细胞包膜在内外脂膜间包含有一层较薄的肽聚糖层。真菌细胞壁成分高度复杂;例如,酵母细胞壁脂膜外由多层甘露聚糖、β-葡聚糖和几丁质组成。因此,相对于革兰氏阴性细菌或真菌,富含肽聚糖的革兰氏阳性细菌等具有高N含量的细胞膜官能团可能有利于有机-有机相互作用。鉴于全球变化、土地利用变化甚至季节性可能导致的微生物群落组成潜在的广泛变化,残体化学性质可能会影响生态系统规模上的SOM稳定性。

我们研究了草地土壤中生物和非生物残体固定的重要性,以及在短期实验室培养中残体化学性质对这种固定的影响。我们提出如下假设:H1、生物和非生物残体固定均可发生,但生物固定更为重要;H2、残体的背景浓度越高;土壤中固定的残体越多(表明产生有机-有机粘附);和H3、革兰氏阳性细菌膜的非生物固定更高(这意味着细胞化学性质很重要)。

03
结果

活性土壤中示踪残体的C固定率比灭菌土低(P=0.006),因此拒绝假设H1,表明残体C的短期固定主要由非生物过程控制(>70%)(图2a)。然而,我们的结果不能证实生物过程对持续的SOM-C累积不重要。我们控制的环境培养条件可能高估了非生物过程的重要性:在一个具有活跃的植物-微生物相互作用的动态自然系统中,活微生物固定残体C,植物和微生物吸收/固定残体N可能对残体固定至关重要。此外,我们实验室培养的单一培养物仅能接近化学和分类学上复杂的天然残体。尽管如此,我们的结果说明了土壤中非生物碳固定的重要短期效应。

活性土壤中的13C固定率比灭菌土壤中的固定率更低,我们认为这可能是灭菌处理的副作用,或者是微生物活动造成的CO2损失。但我们认为灭菌处理影响很小,因为我们没有发现活性土中残体15N的固定率与灭菌土相比也降低(图2b)。灭菌土壤中示踪残体的C:N比没有变化以及活性土壤中示踪残体C:N的下降(P<0.001,数据未展示)的结果等同于活性微生物C周转过程:添加总C的4–10%的固定/损失(可提取的生物量或CO2损失)(图3a和b)。标记残体N2O的损失与CO2相当(<2%,图3c),但我们推测微生物生物量的氮吸收(未测量)比C吸收更低,反映出在这些富氮农牧土壤中,生长对氮的需求较低。培养期间的C-饥饿作用可能导致微生物利用残体C维持生命活动,这反映了底物利用效率(CUE)较低(图3d)。

与对照组相比,有更高残体浓度背景的灭菌和活性土壤中固定了更高的C和N(约高出10–40%,图2a和b),这支持假设H2:残体之间可能相互粘连。此前,基于实验室和长期野外研究中的同位素和观测证据,已有研究提出有机-有机粘附机制。在具有更高肽聚糖(M. luteus)残体的土壤中,我们没有观察到C和N的固定率更高,因此拒绝假设H3(即革兰氏阳性细菌膜的非生物固定率更高)。然而,我们提供了新的证据表明,在灭菌和活性土壤中,增加酵母残体时,标记残体中C和N的固定率更高(C, P<0.001;N, P=0.03)。在添加酵母残体的土壤中,这种较高的微生物C和N的固定似乎不是通过生物固定过程,因为活性土壤中示踪残体的CUE在不同残体类型之间没有差异(图3d)(尽管所有添加残体的处理都低于无添加的对照,这可能是比对照更高底物浓度的响应)。相反,存在酿酒酵母残体的情况下,示踪残体固定率的增加可能表明革兰氏阴性细胞外膜和复杂酵母细胞壁形态之间更快或更强的相互作用,例如和在活的微生物群落中发生的相互作用一样。我们需要进一步开展化合物特异性研究,以期了解其他一般真菌残体或特异的细菌细胞膜和真菌细胞壁化合物是否具备酵母残体的特性。本文结果表明,细胞化学性质有助于粘附机制,促进土壤中残体稳定性。

死亡微生物的粘附性:土壤中微生物残体快速的非生物固定机制

图1. 矿质土壤中微生物残体形成及固定示意图。图中,残体作为微生物的底物,类似于植物输入(凋落物或分泌物)。微生物可以获得与矿物结合或不结合的残体。固定作用包括微生物将残体再循环为新的生物量,最终形成残体,并可能以CO2的形式产生一些损失。稳定作用被认为是通过吸附到矿物表面(“有机-矿物”)来实现,尤其是在粘粉粒表面上。在本研究中,我们假设该过程不局限于发生在矿物表面(“有机-矿物”),也发生在残体间的相互作用(“有机-有机”)上。这些过程促进残体固定,并且该“有机-有机”结合过程可能受到残体化学性质的影响。

死亡微生物的粘附性:土壤中微生物残体快速的非生物固定机制

图2. 具有不同背景残体的活性和灭菌土壤中残体碳氮的固定(13C15N-E.coli)。在活性土壤(微生物固定和吸附)和无菌土壤(仅吸附)中培养3天后,以(a)碳或(b)氮形式固定的13C15N残体。为期3天的培养结束后,分析水提取后残留土壤中标记残体剩余量的百分数作为残体固定率。

死亡微生物的粘附性:土壤中微生物残体快速的非生物固定机制

图3. 具有不同背景残体的活性土壤中残体示踪剂(13C15N-E.coli)的气体损失、生物固定和碳利用效率。在3天培养后,(a)标记残体矿化的CO2,(b)标记残体再利用产生的微生物量C,(c)标记残体矿化的N2O,(d)碳利用效率。

04
结论

我们的结论是,非生物过程对于土壤中残体C和N的短期固定非常重要,需要在研究SOM稳定性的研究中给予更大的重视。我们的结果表明,有机-有机相互作用促进了碳和氮的固定,并提供了新的证据,证明这种机制受细胞化学性质调节。如果这种短期非生物固定发生在原位土壤并持续存在,那么微生物群落结构以及真菌与细菌的比例可能会通过群落细胞化学性质的变化影响碳和氮的稳定性。在田间添加来自不同分类群、不同土壤的同位素标记残体,将有助于研究这些机制的长期重要性。这些发现表明,微生物残体的非生物吸附和残体间相互作用及其化学稳定性以外的功能特性(即细胞分子的特性、聚集和形态)值得进一步在土壤固碳背景下展开研究。


原文链接: https://www.sciencedirect.com/science/article/pii/S0038071720302261

DOIhttps://doi.org/10.1016/j.soilbio.2020.107929




  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 01 - 09
    文献解读原名:Decadal application of mineral fertilizers alters the molecular composition and origins of organic matter in particulate and mineral-associated fractions译名:十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成和来源期刊:SBBIF:9.8发表时间:2023.07第一作者:Zhichao Zou摘要背景:长期矿质施肥对土壤有机质(SOM)的数量、质量和稳定性的影响仍不明确。方法:通过结合四种生物标志物(自由与结合态脂类、木质素酚和氨基糖),研究中国北方农田在10年矿质施肥下(400 kg N ha−1 yr−1, 120 kg P ha−1 yr−1 和 50 kg K ha−1 yr−1)的SOM的分子组成、分解和来源。我们关注于两个差异化的SOM组分:颗粒态有机质(POM)和矿质结合态有机质(MAOM)。结果:尽管施肥对全土SOC的影响有限,但导致MAOM中SOC增加23%,并且改变了其组成和来源。施肥使POM中植物源的萜类化合物增加46%,MAOM中长链脂类(≥20)增加116%,但是降低了POM中54%的短链脂类(结论:矿质施肥通过改变温带农业生态系统中矿物-有机复合体的分子组成和固存,增加SOM的稳定性和持久性。研究背景SOM能够维持土壤肥力、促进土壤水分存留和有机碳(SOC)固存,对农业生态系统的功能的发挥至关重要。在典型的农田,大量矿质肥料的输入增加了作物生产力,导致大量的碳(C)通过残体、根系及其分泌物进入土壤,随后改变了SOM周转。然而,我们对SOC稳定和固存对营养施肥的响应方向和程度的基础理解仍然不明确。之前的研究报道了农业生态系统中施肥管理导致更高、中性以及甚至更低的SOC水平。在集...
  • 点击次数: 0
    2025 - 01 - 02
    文献解读原名:Temperature-dependent soil storage: Changes in microbial viability and respiration in semiarid grasslands译名:随温度变化的土壤储存:半干旱草原微生物活力和呼吸作用的变化期刊:Soil Biology and BiochemistryIF:9.8线上发表日期:2024年12月发表日期:2025年3月通讯作者:田建卿(中国科学院植物研究所)亮点(1)相比于-20℃,在4℃下储存土壤细胞的存活率更高。(2)在 4 °C 下温和解冻 3 天可优化冻土中的细胞活力。(3)土壤呼吸对储存的响应取决于土壤类型。背景土壤微生物是生物地球化学循环的关键引擎,也是土壤有机碳 (SOC) 分解和稳定的关键驱动因素。理想情况下,研究人员应在取样后立即对新鲜土壤进行大多数微生物活动和微生物介导的土壤生物地球化学分析,然而,由于实际限制,在低温下储存土壤是土壤微生物学研究中的常见做法,可能会影响微生物活力和微生物介导的呼吸作用,几十年来,不适当的储存条件导致了已发表的研究中相互矛盾的结论。目前对储存过程中活微生物参数的变化和微生物介导的呼吸仍然缺乏了解。材料与方法(1)于2022年8月和2023年5月在从内蒙古草原生态系统研究站(IMGERS;116◦42′E,北纬43°38′,海拔约1260米)。中国内蒙古自治区采集了4种类型的土壤,包括大针茅(S.grandis)、羊草(L.chinensis)、西林河流域草甸(湿地)和浑善达克沙地(沙质)土壤。之后将4种类型的土壤样本分别在4℃和 -20℃下储存 0、5、40 和210天。对于在-20℃下保存的土壤,作者采用了两种解冻方法:室温下直接解冻和4 ℃下温和解冻(gentle thaw...
  • 点击次数: 0
    2024 - 12 - 06
    # 栢晖 #—特色检测指标—土壤、植物酶活检测氨基糖、PLFA及其同位素、磷组分木质素酚、CUE、有机氮组分、有机酸氨基酸、微生物量碳氮磷、同位素等苯多羧酸、红外光谱、微生物多样性等其他土壤、植物、水体等常规检测指标均可测定欢迎联系下方相关工作人员详细沟通
  • 点击次数: 0
    2024 - 11 - 29
    文献解读原名:Rhizosphere as a hotspot for microbial necromass depositioninto the soil carbon pool译名:根际是微生物残体进入土壤碳库的热点区期刊:Journal of EcologyIF: 5.3发表日期:2024.11.15第一作者:汪其同背景森林土壤是陆地生态系统最大的有机碳(SOC)库,高效发挥森林土壤碳汇功能是实现“双碳”战略目标的重要途径之一。相应地,科学认识森林土壤固碳过程与调控机制已成为当前森林生态学、土壤学领域重要的前沿基础科学问题与林业碳汇功能适应性管理的核心现实需求。近年来不断涌现的证据表明,微生物通过合成代谢而迭代积累的微生物残体很大程度上主导了SOC的长期积累和固持。其中,由于根源C持续输入在根系周围的根际微域形成了一个独特而又典型的微生物热点区,并伴随着更快的微生物生长和更强的微生物代谢活性,进而导致根际区微生物残体对长期SOC积累贡献能力比非根际区更为突出和明显。然而,目前大多研究通常将根际和非根际土壤视为一个均质有机体,而缺乏针对根际区SOC形成过程与稳定性机制的专一性试验研究,导致根际区土壤碳动态过程及其生态重要性在很大程度上未被探索和了解,已成为森林土壤碳汇功能变化认知最少且极为薄弱的关键环节之一。基于此,中国科学院成都生物研究所尹华军研究团队通过系统收集青藏高原典型高寒针叶林39个样点的根际和非根际土壤样品(图1),量化了根际和非根际土壤中有机碳和氨基糖的浓度,并通过计算根际相对于非根际土壤中增加的氨基糖与增加的有机碳的比例(RAS/SOC),评估了微生物残体对根际SOC积累的贡献程度。同时测定了根际土壤养分浓度和微生物生理性状,以揭示多变环境下根际微生物残体对SOC积累贡献的潜在微生物调控机制。图1  39个高寒针叶林采样点分布图我们假设:(1...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务