028-8525-3068
新闻动态 News
News 行业新闻

死亡微生物的粘附性:土壤中微生物残体快速的非生物固定机制

日期: 2022-08-17
标签:




文献解读

BAIHUI

原名:Sticky dead microbes: Rapid abiotic retention of microbial necromass in soil


译名:死亡微生物的粘附性:土壤中微生物残体快速的非生物固定机制

期刊:Soil Biology and Biochemistry


IF:8.5(2021


发表时间:2020年8月14日


第一作者:   Kate M.Buckeridge


通讯作者:Kate M.Buckeridge


主要单位:

Lancaster Environment Centre, University of Lancaster, Lancaster, UK

UK Centre for Ecology & Hydrology, Lancaster, UK


死亡微生物的粘附性:土壤中微生物残体快速的非生物固定机制


01
摘要

微生物残体主导土壤有机质。最近关于残体和土壤碳储存的研究主要集中在残体的产生和稳定机制,而不是残体的固定机制。我们使用稳定同位素标记微生物残体进行土壤培养试验。结果表明,对于短期的残体固定,非生物吸附固定可能比生物固定更重要。我们证明了残体吸附固定不仅发生在矿物表面,还可能与其他残体相互作用。此外,残体化学性质能改变残体之间的相互作用,当存在酵母残体时,细菌示踪残体会保留更多。这些发现表明,除了化学稳定性之外,微生物残体的吸附和非生物相互作用及其功能特性需要在土壤固碳的背景下进一步研究。

关键词:

土壤有机质,功能特性,稳定同位素,草地牧场,碳固持,氮

02
背景

土壤有机质(SOM)是土壤健康和可持续农业的关键指标。对SOM稳定性的研究传统上侧重于植物对土壤输入的质量和数量,然而,最近的研究表明,SOM主要由死亡的微生物产物和残体主导。残体在土壤中的持留时间可能受到残体吸收固定到微生物生物量影响,但残体固定最终依赖于其吸附到土壤矿物表面形成的微团聚体。实际上,生物固定作用(微生物固定化)和非生物固定(吸附和分子相互作用)可能同时发生,但尚未有研究评估这些短期过程的相对重要性(图1)。

矿物表面可观察到微生物残体,这支持以下观点:稳定SOM的积累主要由有机-矿物吸附控制,并受矿物表面积限制。然而,实验检测到的残体并不是均匀的覆盖在矿物表面,而是以块状形态存在,这表明SOM的稳定性也可能包含有机物间的相互作用,或残体通过离子相互作用、氢键、范德华力、(部分)包埋作用和其他残体及有机质粘连(图1)。了解这两个非生物吸附过程的相对重要性对于预测SOM持留时间的上限至关重要。

微生物残体的化学性质被认为是SOM储存的不重要调节因素,因为相比不同的植物输入,其化学成分更为相似。以往关于残体化学性质和持久性的研究集中于其稳定性,并强调几丁质的固定。然而,细胞化学性质可以改变细胞间粘附率和有机-矿物吸附率,尤其是对于富含N的残体。革兰氏阳性细菌包膜在脂膜外有一层厚的交联肽聚糖层,而革兰氏阴性细胞包膜在内外脂膜间包含有一层较薄的肽聚糖层。真菌细胞壁成分高度复杂;例如,酵母细胞壁脂膜外由多层甘露聚糖、β-葡聚糖和几丁质组成。因此,相对于革兰氏阴性细菌或真菌,富含肽聚糖的革兰氏阳性细菌等具有高N含量的细胞膜官能团可能有利于有机-有机相互作用。鉴于全球变化、土地利用变化甚至季节性可能导致的微生物群落组成潜在的广泛变化,残体化学性质可能会影响生态系统规模上的SOM稳定性。

我们研究了草地土壤中生物和非生物残体固定的重要性,以及在短期实验室培养中残体化学性质对这种固定的影响。我们提出如下假设:H1、生物和非生物残体固定均可发生,但生物固定更为重要;H2、残体的背景浓度越高;土壤中固定的残体越多(表明产生有机-有机粘附);和H3、革兰氏阳性细菌膜的非生物固定更高(这意味着细胞化学性质很重要)。

03
结果

活性土壤中示踪残体的C固定率比灭菌土低(P=0.006),因此拒绝假设H1,表明残体C的短期固定主要由非生物过程控制(>70%)(图2a)。然而,我们的结果不能证实生物过程对持续的SOM-C累积不重要。我们控制的环境培养条件可能高估了非生物过程的重要性:在一个具有活跃的植物-微生物相互作用的动态自然系统中,活微生物固定残体C,植物和微生物吸收/固定残体N可能对残体固定至关重要。此外,我们实验室培养的单一培养物仅能接近化学和分类学上复杂的天然残体。尽管如此,我们的结果说明了土壤中非生物碳固定的重要短期效应。

活性土壤中的13C固定率比灭菌土壤中的固定率更低,我们认为这可能是灭菌处理的副作用,或者是微生物活动造成的CO2损失。但我们认为灭菌处理影响很小,因为我们没有发现活性土中残体15N的固定率与灭菌土相比也降低(图2b)。灭菌土壤中示踪残体的C:N比没有变化以及活性土壤中示踪残体C:N的下降(P<0.001,数据未展示)的结果等同于活性微生物C周转过程:添加总C的4–10%的固定/损失(可提取的生物量或CO2损失)(图3a和b)。标记残体N2O的损失与CO2相当(<2%,图3c),但我们推测微生物生物量的氮吸收(未测量)比C吸收更低,反映出在这些富氮农牧土壤中,生长对氮的需求较低。培养期间的C-饥饿作用可能导致微生物利用残体C维持生命活动,这反映了底物利用效率(CUE)较低(图3d)。

与对照组相比,有更高残体浓度背景的灭菌和活性土壤中固定了更高的C和N(约高出10–40%,图2a和b),这支持假设H2:残体之间可能相互粘连。此前,基于实验室和长期野外研究中的同位素和观测证据,已有研究提出有机-有机粘附机制。在具有更高肽聚糖(M. luteus)残体的土壤中,我们没有观察到C和N的固定率更高,因此拒绝假设H3(即革兰氏阳性细菌膜的非生物固定率更高)。然而,我们提供了新的证据表明,在灭菌和活性土壤中,增加酵母残体时,标记残体中C和N的固定率更高(C, P<0.001;N, P=0.03)。在添加酵母残体的土壤中,这种较高的微生物C和N的固定似乎不是通过生物固定过程,因为活性土壤中示踪残体的CUE在不同残体类型之间没有差异(图3d)(尽管所有添加残体的处理都低于无添加的对照,这可能是比对照更高底物浓度的响应)。相反,存在酿酒酵母残体的情况下,示踪残体固定率的增加可能表明革兰氏阴性细胞外膜和复杂酵母细胞壁形态之间更快或更强的相互作用,例如和在活的微生物群落中发生的相互作用一样。我们需要进一步开展化合物特异性研究,以期了解其他一般真菌残体或特异的细菌细胞膜和真菌细胞壁化合物是否具备酵母残体的特性。本文结果表明,细胞化学性质有助于粘附机制,促进土壤中残体稳定性。

死亡微生物的粘附性:土壤中微生物残体快速的非生物固定机制

图1. 矿质土壤中微生物残体形成及固定示意图。图中,残体作为微生物的底物,类似于植物输入(凋落物或分泌物)。微生物可以获得与矿物结合或不结合的残体。固定作用包括微生物将残体再循环为新的生物量,最终形成残体,并可能以CO2的形式产生一些损失。稳定作用被认为是通过吸附到矿物表面(“有机-矿物”)来实现,尤其是在粘粉粒表面上。在本研究中,我们假设该过程不局限于发生在矿物表面(“有机-矿物”),也发生在残体间的相互作用(“有机-有机”)上。这些过程促进残体固定,并且该“有机-有机”结合过程可能受到残体化学性质的影响。

死亡微生物的粘附性:土壤中微生物残体快速的非生物固定机制

图2. 具有不同背景残体的活性和灭菌土壤中残体碳氮的固定(13C15N-E.coli)。在活性土壤(微生物固定和吸附)和无菌土壤(仅吸附)中培养3天后,以(a)碳或(b)氮形式固定的13C15N残体。为期3天的培养结束后,分析水提取后残留土壤中标记残体剩余量的百分数作为残体固定率。

死亡微生物的粘附性:土壤中微生物残体快速的非生物固定机制

图3. 具有不同背景残体的活性土壤中残体示踪剂(13C15N-E.coli)的气体损失、生物固定和碳利用效率。在3天培养后,(a)标记残体矿化的CO2,(b)标记残体再利用产生的微生物量C,(c)标记残体矿化的N2O,(d)碳利用效率。

04
结论

我们的结论是,非生物过程对于土壤中残体C和N的短期固定非常重要,需要在研究SOM稳定性的研究中给予更大的重视。我们的结果表明,有机-有机相互作用促进了碳和氮的固定,并提供了新的证据,证明这种机制受细胞化学性质调节。如果这种短期非生物固定发生在原位土壤并持续存在,那么微生物群落结构以及真菌与细菌的比例可能会通过群落细胞化学性质的变化影响碳和氮的稳定性。在田间添加来自不同分类群、不同土壤的同位素标记残体,将有助于研究这些机制的长期重要性。这些发现表明,微生物残体的非生物吸附和残体间相互作用及其化学稳定性以外的功能特性(即细胞分子的特性、聚集和形态)值得进一步在土壤固碳背景下展开研究。


原文链接: https://www.sciencedirect.com/science/article/pii/S0038071720302261

DOIhttps://doi.org/10.1016/j.soilbio.2020.107929




  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 04 - 30
    土壤回旋共振质谱是一种高分辨率、高灵敏度的质谱分析技术,基于带电粒子在磁场中以回旋运动的频率与外加射频共振时的检测原理。这类质谱仪一般用于检测复杂混合物中的微量有机或无机化合物,能够提供高精度的分子质量和结构信息。在生态土壤研究中,可以在以下几个方面拓宽我们的视野: 1、高灵敏检测土壤中痕量有机物  • 检测土壤有机质组分如氨基糖、木质素衍生物、脂类等; • 能区分同分异构体,有助于理解有机碳转化路径; • 可研究腐殖质演化和稳定机制。 2. 剖析微生物代谢产物与土壤代谢指纹  • 识别微生物代谢过程中生成的标志性代谢物; • 结合同位素示踪,能用于土壤微生物C/N代谢流的定量追踪; • 有助于研究微生物驱动的碳氮循环机制。 3. 辅助土壤碳库稳定性研究  • 通过精细分子分辨率识别稳定/易变组分; • 判断某些特定有机物的生物可利用性与持久性; • 有助于理解土地利用/管理对碳库稳定的影响。 4. 环境污染物检测  • 检测痕量有机污染物(如农药、PAHs、抗生素残留等); • 在污染溯源与降解路径解析中发挥重要作用; • 与多种污染物的形态分析结合,进行风险评估。 5、在生态研究中的典型应用案例: • 热带森林与农田转换对有机碳分子结构的影响研究; • 利用15N标记+CRMS解析土壤有机氮转化路径; • 通过检测抗生素类残留探讨畜禽粪肥对土壤微生物生态的扰动; • 研究火烧/干旱胁迫下微生物代谢产物的变化与碳流稳定性。上述提到的项目栢晖生物均可测定,更多相关信息欢迎联系文末工作人员详细沟通。-THE END-栢晖生物成立于...
  • 点击次数: 0
    2025 - 04 - 29
    01按照土壤碳的形态分类(1)有机碳 • 总有机碳:土壤中所有来源的有机碳总量。 • 可溶性有机碳:可溶于水的有机碳,影响土壤碳循环的活性部分。 • 颗粒态有机碳:粒径通常在53 μm–2 mm之间的有机碳,较易分解。 • 矿物结合有机碳:与矿物颗粒结合的有机碳,较为稳定。 • 轻组有机碳:通过浮选法分离出的轻组有机碳,主要由未完全分解的有机质组成。 • 重组有机碳:通过浮选法分离出的重组有机碳,主要由金属氧化物结合的有机质组成。 • 微生物生物量碳:土壤微生物体内的碳,是活性有机碳的一部分。 • 易氧化碳:能被高锰酸钾氧化的有机碳,表征活性有机碳库。(2)无机碳 • 总无机碳:土壤中的所有无机碳总量。 • 碳酸盐碳:主要以方解石(CaCO₃)、白云石(CaMg(CO₃)₂)等矿物形式存在。 • 碳酸氢盐碳:土壤溶液中的可溶性无机碳,易随水流失。02按碳库的稳定性分类 • 活性有机碳库:周转快,易受环境变化影响,包括DOC、MBC、POC等。 • 慢性有机碳库:周转较慢,部分矿物结合的有机碳属于此类。 • 惰性有机碳库:高度稳定,如腐殖质碳、黑碳。03按土壤深度分布分类 • 表层土壤碳( 0–30 cm):主要受植被、微生物和人为活动影响。 • 深层土壤碳(30 cm):稳定性较高,受矿物结合和碳迁移过程影响。04按来源分类 • 植被来源碳:枯落物、根系分泌物、植物残体分解产生的碳。 • 微生物来源碳:微生物代谢及死亡后残留的碳。 • 外源输入碳:施肥、污染物沉降等外部输入的碳。这些指标可以用于研究土壤碳循环、碳固存、农业土壤管理等问题。在实际研究中,通常结合稳定同位素分析、核磁共振(N...
  • 点击次数: 0
    2025 - 04 - 09
    铁氧化物结合态有机碳在土壤碳汇和碳稳定方面有重要意义,尤其在全球气候变化和土壤碳库管理背景下,越来越受关注。但仍然存在不少研究空白。今天我们通过ChatGPT和DeepSeek两大AI平台分析一下在该领域尚未被充分研究的热点问题和潜在研究方向~一、ChatGPT分析结果01铁氧化物结合态有机碳的稳定性机制与动态过程研究方向: • 原位监测 Fe-OC 在周期性湿润/干燥条件下的稳定性。 • 利用同位素示踪和光谱技术揭示铁矿物转化(非晶态铁 → 晶态铁)对有机碳稳定的影响。研究意义:• 理解铁氧化物在不同氧化还原条件下如何稳定或释放碳,有助于预测湿地、稻田等环境下土壤碳库的动态变化,进而对碳循环建模和气候变化预测有指导意义。02铁-有机复合物中有机碳的分子特征与来源研究方向: • 利用高分辨率质谱(FTICR-MS)、X射线吸收精细结构光谱(XAFS) 等先进技术分析 Fe-OC 复合物中的有机分子组成。 • 比较不同土壤类型或植被类型下 Fe-OC 结合的有机碳来源差异。研究意义:• 搞清楚什么样的有机碳更容易与铁矿物结合,有助于优化土壤管理策略,促进碳固定,提高土壤碳汇功能。03微生物在铁氧化物-有机碳互作中的作用机制研究方向: • 研究不同功能群微生物(铁还原菌、铁氧化菌)在 Fe-OC 动态中的角色。 • 解析微生物胞外多糖(EPS)、胞外电子传递对 Fe-OC 形成和解离的影响。研究意义:• 微生物过程是土壤碳稳定的关键环节,揭示微生物与 Fe-OC 的交互机制,有助于发展基于微生物调控的土壤碳汇增强技术。04土地利用变化和管理措施对 Fe-OC 储量与稳定性的影响研究方向: • 比较不同土地利用类...
  • 点击次数: 0
    2025 - 03 - 14
    栢晖,第三方专业科研检测机构2025年3月8日下午13点,栢晖生物举行了一年一度的“安全日”活动。本次活动分为“安全知识培训”和“消防实操演练”两个环节,旨在进一步提升全员安全意识和应急处置能力。活动伊始,总经理杨锦兀发表讲话,介绍了举办“安全日”活动的初心与意义,并强调实验室安全对企业和员工的重要性。他指出,只有将安全理念内化于心、外化于行,才能保障科研工作的有序开展。在随后的安全知识培训中,实验室张副经理围绕灭火器使用、试剂管理、气瓶安全和现场应急处理等内容进行了系统讲解。张副经理结合真实案例,深入浅出地讲解了灭火器的正确操作步骤、火灾应对要点,以及实验室试剂的分类、存储和废弃处理规范等。通过图示和现场互动,全体员工对安全操作有了更清晰、更全面的认识。消防演练环节中,张副经理现场示范灭火器的正确使用方法,并组织员工逐一进行实操训练。通过动手演练,大家切实掌握了应急灭火技能,提升了面对突发状况的应对能力。安全,是科研顺利推进的前提,也是企业可持续发展的保障。栢晖生物始终坚持“安全第一、预防为主”的原则,持续夯实安全管理基础,营造更加安全、高效的实验环境。
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务