028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 河流表层中溶解性黑碳的特征

日期: 2024-08-30
标签:
文献解读| 河流表层中溶解性黑碳的特征

原名:Characteristics of dissolved black carbon in riverine surface microlayer

译名:河流表层中溶解性黑碳的特征

期刊:Marine Pollution Bulletin

IF:5.3

发表日期:2023.07

第一作者:Vaezzadeh, Vahab 中国科学院广州地球化学研究所有机地球化学国家重点实验室 粤港澳环境污染与控制联合实验室

一、背景

黑碳(BC)是由生物质和化石燃料不完全燃烧产生的。根据BC的结构和土壤组成,土壤中的BC最终会生物降解并在孔隙水中溶解,从而通过地表径流输送到水生环境中。BC的溶解形式(DBC)通过河流进入海洋,由于其难降解的特性,对地球上的碳循环具有重要意义。先前使用(BPCAs)苯多羧酸方法的研究已经证明了河流和海洋中不同的DBC特征。虽然DBC的河流输出被认为是海洋DBC库的主要贡献者,其速率为27 Tg -1C-1y ,但关于河流DBC的含量和特征(结构和同位素特征)的数据缺乏。

表层微层(SML)厚度为1 ~ 1000 μm,是大气和水生环境之间的分界线,与下层相比,具有不同的生物地球化学特性。SML在(可溶性有机碳)DOC及其难熔部分的扩散气水交换中起着重要作用,既是DBC的来源,也是DBC的汇。目前,有机污染物在SML中的富集已经得到了广泛的研究,而空气-水界面的DBC研究一直被忽视。因此,通过对珠江(PR)上、中和下游的SML中DBC含量组成及其同位素的研究弥补河流DBC特征和河口DBC的运输机制的数据的缺失以及有助于更好的理解DBC沿陆-海洋连续体的运输和命运。

二、科学问题

(1)分析从PR中采集的SML样本中DBC的含量、组成和δ13C特征。

(2)将SML中DBC的特征和来源与全球不同水生生态系统的现有文献进行比较。

三、材料与方法

(1)SML水样采集于2020年10月东部PR上、中、下游的沙绵(SM:23.1◦N/113.2◦E)、帕周(P:23.1◦N/113.4◦E)和黄蒲(HP:23.1◦N/113.5◦E)。

文献解读| 河流表层中溶解性黑碳的特征

(2)SML样品的采集使用预先清洗的定制旋转鼓采样器(长50 cm,直径30 cm,转速为73.5 r/min。

(3)测定指标:DOC(总有机碳(TOC)分析仪),DBC(采用Dittmar(2008)描述的BPCA方案),DBC的δ13C分析(作者2021年出版论文中相同的方法)。

(4)数据分析:利用斯皮尔曼相关系数研究DBC与DOC之间的相关性,采用了单因素方差检验来分析不同采样点间的DBC组成和δ13C值的差异。

BPCA操作方法将冻干的沉积物样品(50 mg)置于10 mL玻璃安瓿中。加入2 mL 65%硝酸后,将安瓿密封,放入100 mL聚四氟乙烯内衬不锈钢反应容器中。将反应容器紧密封闭,然后在180℃的烤箱中加热8h。在反应容器中加入了大约100 μL的水,以保持安瓿内外的稳定的蒸汽压,并防止安谱瓶爆炸。反应容器在室温下冷却,将安谱瓶中的溶液转移到4 mL小瓶中,在50℃的高压氮气流中干燥。样品在1 mL超纯水中重新溶解,用注射器过滤器(13 mm×0.22 μm,PTFE,ANPEL实验室技术)过滤,用岛津LC-20AT高效液相色谱(HPLC)测量BPCAs,并配备岛津SPDM20A光电二极管阵列探测器(PAD)。测量了三至六取代酸BPCA,包括1,2,3-苯三甲酸和1,2,4-苯三甲酸(B3CA)、1,2,4,5-苯四甲酸、1,2,3,5-苯四羧酸、1,2,3,4-苯四甲酸(B4CA)、1,2,3,4,5-苯五甲酸(B5CA)和1,2,3,4,5,6-苯六甲酸(B6CA)。除了市售的1,2,3,5-B4CA和1,2,3,4-B4CA外,通过使用BPCA标准溶液的外部校准曲线(线性回归r2≥0.999)对BPCA进行定量,并根据其异构体(即1,2,4,5-苯四甲酸)的校准曲线进行定量。所有BPCA标准品均购自Sigma-Aldrich。校准曲线的浓度水平分别为3.2、4.8、6.4、8、16、32、48、64和80 ng/μL。使用海洋沉积物参考物质(NIST SRM 1941b)测试了实验室开发的BPCA方法的准确性,结果为9.88±0.26 g BC/kg沉积物(或55.37±1.46 g BPCA-C/kg总有机碳(TOC),三个重复)。重复分析的变异系数<5%。BC氧化过程中产生的羧酸官能团的平均数量(Ave-BPCA)的不确定度为±0.02。对每批样品进行工艺空白试验,以进行质量控制。

同位素测测定对选定的沉积物样本进行了δ13C特征分析,以确定两种最丰富的BPCA,即B5CA和B6CA。使用较大样本量的沉积物(450 mg)对BPCA进行δ13C分析。与BPCA程序类似,沉淀物样品在10 mL安谱瓶中用2 mL 65%硝酸在180℃下氧化8h,然后用预清洁的玻璃纤维过滤器(直径2 cm,Whatman)过滤。然后在50℃的高压氮气流下去除硝酸,将样品重新溶解在1 mL超纯水中,并使用填充有阳离子交换树脂的玻璃柱(Dowex 50 WX8 400,Sigma-Aldrich)进行阳离子去除。从阳离子交换柱中获得约50 mL水溶液,将其在-20℃下冷冻并随后冷冻干燥。然后将样品重新溶解在通过将3.8 mL HPLC级三氟乙酸(TFA)与1000 mL超纯水混合制备的水溶液(pH:~1.3)中,并用制备液相色谱法(预LC)分离B5CA和B6CA。重新注入收集的B5CA和B6CA级分的等分试样,未发现可检测到的污染物。使用Surveyor HPLC系统通过Isolink接口(Thermo Scientific)连接到Delta V IRMS,测量分离的B5CA和B6CA的δ13C。δ13C值以相对于维也纳Pee-Dee-Belemnite(VPDB)的mil(‰)表示。B5CA和B6CA的回收率分别用标准品和玉米炭样品进行了测试,B5CA和B6 CA(五个重复)的回收率范围分别为81.2±2.6%和88.0±2.8%。

四、结果

(1)PR上、中和下游的DBC含量排序为:SM>PZ>HP。DBC和DOC之间存在显著相关性(p < 0.05),在亚马逊流域低流量时期不存在相关性。SML样品中DBC氧化产物中B5CA和B6CA占BPCAs的50%以上。B4CA、B5CA和B6CA均具有δ13C特征,这表明C3植物的生物质燃烧可能是主要来源。B6CA/B5CA比值相对较低,但与(B5CA+B6CA)与总BPCA的比值相比,SML中的DBC表现出更高的芳香族缩合程度。

文献解读| 河流表层中溶解性黑碳的特征


(2)河流DBC的芳香结构高度凝聚,其次是沿海DBC,而海洋的芳香凝聚程度最低。PR SML中的DBC密度比普遍低于全球河流DBC的密度比。

文献解读| 河流表层中溶解性黑碳的特征


(3)低径流期北极河流观测到的低B6CA/B5CA比值突出了水文因素对DBC芳香族凝聚的潜在影响。B6CA/B5CA和(B5CA+B6CA)/总BPCA低于DBC河流,如北极河流和亚马逊流域,分别为0.77-0.86和0.59-0.68。

文献解读| 河流表层中溶解性黑碳的特征


五、结论

(1)SML的DBC含量(100.9~166.6μg/ L)低于全球河流水域平均水平,遵循PR上>中>下游的趋势。

(2)DBC(BPCAs)的分子标记及其δ13C值在各采样点间无统计学差异(p > 0.05),表明以生物质燃烧为主要来源。

(3)SML中较低的DBC含量和DBC/DOC比值表明,SML的独特特性,如光化学和絮凝过程,可能会影响DOC浓缩芳香组分的含量和缩合程度。

(4)在有机富集的生态系统中,SML中的光化学过程可以通过絮凝触发DBC最浓缩和疏水组分的聚集和沉积。

更多实验检测相关讯息so栢晖生物了解更多~


  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 01 - 09
    文献解读原名:Decadal application of mineral fertilizers alters the molecular composition and origins of organic matter in particulate and mineral-associated fractions译名:十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成和来源期刊:SBBIF:9.8发表时间:2023.07第一作者:Zhichao Zou摘要背景:长期矿质施肥对土壤有机质(SOM)的数量、质量和稳定性的影响仍不明确。方法:通过结合四种生物标志物(自由与结合态脂类、木质素酚和氨基糖),研究中国北方农田在10年矿质施肥下(400 kg N ha−1 yr−1, 120 kg P ha−1 yr−1 和 50 kg K ha−1 yr−1)的SOM的分子组成、分解和来源。我们关注于两个差异化的SOM组分:颗粒态有机质(POM)和矿质结合态有机质(MAOM)。结果:尽管施肥对全土SOC的影响有限,但导致MAOM中SOC增加23%,并且改变了其组成和来源。施肥使POM中植物源的萜类化合物增加46%,MAOM中长链脂类(≥20)增加116%,但是降低了POM中54%的短链脂类(结论:矿质施肥通过改变温带农业生态系统中矿物-有机复合体的分子组成和固存,增加SOM的稳定性和持久性。研究背景SOM能够维持土壤肥力、促进土壤水分存留和有机碳(SOC)固存,对农业生态系统的功能的发挥至关重要。在典型的农田,大量矿质肥料的输入增加了作物生产力,导致大量的碳(C)通过残体、根系及其分泌物进入土壤,随后改变了SOM周转。然而,我们对SOC稳定和固存对营养施肥的响应方向和程度的基础理解仍然不明确。之前的研究报道了农业生态系统中施肥管理导致更高、中性以及甚至更低的SOC水平。在集...
  • 点击次数: 0
    2025 - 01 - 02
    文献解读原名:Temperature-dependent soil storage: Changes in microbial viability and respiration in semiarid grasslands译名:随温度变化的土壤储存:半干旱草原微生物活力和呼吸作用的变化期刊:Soil Biology and BiochemistryIF:9.8线上发表日期:2024年12月发表日期:2025年3月通讯作者:田建卿(中国科学院植物研究所)亮点(1)相比于-20℃,在4℃下储存土壤细胞的存活率更高。(2)在 4 °C 下温和解冻 3 天可优化冻土中的细胞活力。(3)土壤呼吸对储存的响应取决于土壤类型。背景土壤微生物是生物地球化学循环的关键引擎,也是土壤有机碳 (SOC) 分解和稳定的关键驱动因素。理想情况下,研究人员应在取样后立即对新鲜土壤进行大多数微生物活动和微生物介导的土壤生物地球化学分析,然而,由于实际限制,在低温下储存土壤是土壤微生物学研究中的常见做法,可能会影响微生物活力和微生物介导的呼吸作用,几十年来,不适当的储存条件导致了已发表的研究中相互矛盾的结论。目前对储存过程中活微生物参数的变化和微生物介导的呼吸仍然缺乏了解。材料与方法(1)于2022年8月和2023年5月在从内蒙古草原生态系统研究站(IMGERS;116◦42′E,北纬43°38′,海拔约1260米)。中国内蒙古自治区采集了4种类型的土壤,包括大针茅(S.grandis)、羊草(L.chinensis)、西林河流域草甸(湿地)和浑善达克沙地(沙质)土壤。之后将4种类型的土壤样本分别在4℃和 -20℃下储存 0、5、40 和210天。对于在-20℃下保存的土壤,作者采用了两种解冻方法:室温下直接解冻和4 ℃下温和解冻(gentle thaw...
  • 点击次数: 0
    2024 - 12 - 06
    # 栢晖 #—特色检测指标—土壤、植物酶活检测氨基糖、PLFA及其同位素、磷组分木质素酚、CUE、有机氮组分、有机酸氨基酸、微生物量碳氮磷、同位素等苯多羧酸、红外光谱、微生物多样性等其他土壤、植物、水体等常规检测指标均可测定欢迎联系下方相关工作人员详细沟通
  • 点击次数: 0
    2024 - 11 - 29
    文献解读原名:Rhizosphere as a hotspot for microbial necromass depositioninto the soil carbon pool译名:根际是微生物残体进入土壤碳库的热点区期刊:Journal of EcologyIF: 5.3发表日期:2024.11.15第一作者:汪其同背景森林土壤是陆地生态系统最大的有机碳(SOC)库,高效发挥森林土壤碳汇功能是实现“双碳”战略目标的重要途径之一。相应地,科学认识森林土壤固碳过程与调控机制已成为当前森林生态学、土壤学领域重要的前沿基础科学问题与林业碳汇功能适应性管理的核心现实需求。近年来不断涌现的证据表明,微生物通过合成代谢而迭代积累的微生物残体很大程度上主导了SOC的长期积累和固持。其中,由于根源C持续输入在根系周围的根际微域形成了一个独特而又典型的微生物热点区,并伴随着更快的微生物生长和更强的微生物代谢活性,进而导致根际区微生物残体对长期SOC积累贡献能力比非根际区更为突出和明显。然而,目前大多研究通常将根际和非根际土壤视为一个均质有机体,而缺乏针对根际区SOC形成过程与稳定性机制的专一性试验研究,导致根际区土壤碳动态过程及其生态重要性在很大程度上未被探索和了解,已成为森林土壤碳汇功能变化认知最少且极为薄弱的关键环节之一。基于此,中国科学院成都生物研究所尹华军研究团队通过系统收集青藏高原典型高寒针叶林39个样点的根际和非根际土壤样品(图1),量化了根际和非根际土壤中有机碳和氨基糖的浓度,并通过计算根际相对于非根际土壤中增加的氨基糖与增加的有机碳的比例(RAS/SOC),评估了微生物残体对根际SOC积累的贡献程度。同时测定了根际土壤养分浓度和微生物生理性状,以揭示多变环境下根际微生物残体对SOC积累贡献的潜在微生物调控机制。图1  39个高寒针叶林采样点分布图我们假设:(1...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务