028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 多营养级相互作用通过微生物残体积累以支持干旱生物结皮中土壤碳封存

日期: 2025-03-05
标签:


文献解读| 多营养级相互作用通过微生物残体积累以支持干旱生物结皮中土壤碳封存

文献解读


原名:Multitrophic interactions support belowground carbon sequestration

through microbial necromass accumulation in dryland biocrusts

译名:多营养级相互作用通过微生物残体积累以支持干旱生物结皮中土壤碳封存

期刊:Soil Biology and Biochemistry

IF:9.8

发表日期:2025年1月

第一作者:石佳 中国农业大学 博士研究生

通讯作者:王祥 中国农业大学 教授


1


背景

土壤有机碳(SOC)是全球最大的陆地有机碳库,估计有1500-2400 Pg。SOC在调节全球碳储量和通量方面发挥着重要作用。土壤微生物被视为土壤碳动态的主要调节因子。一般来说,微生物通过分解减少SOC库存,同时通过形成微生物生物量和稳定坏死残留物来促进稳定的碳库。最近对土壤生物标志物的全球评估表明,微生物尸体占SOC库的50%,而活微生物生物量不到5%。因此,需要深入了解控制微生物生命和死亡过程的机制,以揭示全球碳循环的复杂性,并制定有效的土壤管理策略。

如生物物理特征、细胞化学组成和生活史等,影响土壤有机物循环与微生物残体碳(MNC)积累。碳利用效率(CUE)衡量转化为微生物生物量的有机碳占比,反映土壤有机碳(SOC)平衡,与 MNC、SOC 的关系存争议。

竞争、互利共生和捕食等生物相互作用,影响微生物残体形成与性质。土壤微生物是食物网基础,种间竞争和高营养级捕食影响其存亡与生物量向残体的转化。营养级内和级间的相互作用,会影响 MNC 积累与 SOC 。


2


提出假设

(1)多个营养级类群会介导土壤微生物残体碳的积累。

(2)营养级内的资源竞争和跨营养级的掠食性捕食,都可能导致土壤碳更高效地分解,以及微生物残体积累减少。


3


材料与方法

(1)研究区域位于中国西北部陕西省神木市(东经110°25′–110°29′,北纬 38°44′ − 38°47′),研究选取了四个代表性地点,在每个地点内随机选定三个样方(10×10 米,样方间距约 100 米)。在每个样方的裸土区和生物结皮覆盖区分别采集五个土壤芯样(深度 0 - 5 厘米)。将五个土壤芯样充分混合,得到一个混合土壤样本,最终共获得 24 个样本。

(2)检测指标:pH、SOC、TN、铵态氮、硝态氮、DOM、微生物碳利用效率(CUE)、氨基糖、16srRNA测序、ITS测序。


4


结果


(1)生物结皮土壤呈现出独特的微生物残体碳和群落多样性模式:生物结皮土壤的微生物残体碳(MNC)含量显著(p <0.001)高于裸土。生物结皮土壤样本中的细菌和真菌残体碳(BNC 和 FNC)含量高于裸土样本(p < 0.001)。然而,不同样本类型之间,MNC 占土壤有机碳(SOC)的比例并无差异(p> 0.05)。有趣的是,与裸土相比,生物结皮土壤中 BNC 对 SOC 的贡献更高(p < 0.05),而 FNC 的情况则相反

文献解读| 多营养级相互作用通过微生物残体积累以支持干旱生物结皮中土壤碳封存

文献解读| 多营养级相互作用通过微生物残体积累以支持干旱生物结皮中土壤碳封存

(2)微生物残体碳与微生物群落之间的关联:所有类群的香农多样性与细菌残体碳(BNC)、真菌残体碳(FNC)和微生物残体碳(MNC)呈负相关(p < 0.05)(图 2A)。就单个生物类型而言,古菌、细菌、真菌和原生动物群落的多样性与 MNC 呈负相关(p < 0.05),而藻类群落的多样性与 MNC 呈正相关(p < 0.05)(图 2A)。在分类丰富度方面,只有线虫的丰富度与 MNC 及其组成部分存在显著关联,而与其他生物类型的相关性较弱(图 2A)。通过 Mantel 检验,进一步研究了群落结构与微生物残体碳之间的关联(图 2B)。藻类、细菌和原生动物群落以及综合群落(所有类群)的结构与 BNC、FNC 和 MNC 显著相关(图 2B)。群落相异性与 BNC/SOC 或 MNC/SOC 均无相关性;相反,所有类群、细菌和原生动物的群落相异性与 FNC/SOC 密切相关。

文献解读| 多营养级相互作用通过微生物残体积累以支持干旱生物结皮中土壤碳封存


(3)生物结皮群落与裸土群落中不同的多营养级相互作用:为了比较生物结皮群落和裸土群落中的物种相互作用,构建了藻类、古菌、细菌、真菌、线虫和原生动物的综合共现网络(图 3)。各类群香农多样性与 BNC、FNC、MNC 负相关(p < 0.05)。单一生物中,古菌、细菌、真菌、原生动物群落多样性与 MNC 负相关,藻类正相关,原生动物相关性最强。丰富度上,仅线虫与 MNC 显著关联。考虑微生物残体占 SOC 比例,与多样性显著相关性少。Mantel 检验表明,多群落结构与 BNC、FNC、MNC 显著相关,群落相异性与 FNC/SOC 密切相关。

构建网络对比生物结皮和裸土群落物种作用。两网络节点、连接数不同。生物结皮网络拓扑更简单,子网也如此。低营养级节点及连接多于高营养级,生物结皮高营养级、藻类节点相对丰度更高。生物结皮子网 WTA 比例低、CTA 比例高,WTA 负向关联更少。特定类群关联不同,裸土网络中古菌、细菌相关 WTA 多,生物结皮网络中藻类、真菌、线虫、原生动物相关 WTA 多,藻类、线虫关联更多。 

文献解读| 多营养级相互作用通过微生物残体积累以支持干旱生物结皮中土壤碳封存


(4)微生物残体碳(MNC)及其组成部分(细菌残体碳 BNC 和真菌残体碳 FNC)与多个子网参数呈负相关,这些参数包括平均聚类系数、平均度、边数、图密度和模块度(图 4)。此外,这些网络参数与 BNC / 土壤有机碳(SOC)的比值也呈负相关,这表明网络复杂性增加可能会导致土壤细菌残体降解。营养级内关联(WTA)和跨营养级关联(CTA)均与微生物残体碳及其组成部分显著相关(p < 0.05,图 4),不过 WTA 呈负相关,CTA 呈正相关(图 4)。采用随机森林模型评估群落组成、网络复杂性、土壤性质和物种相互作用对微生物残体碳积累的相对重要性(图 4)。

文献解读| 多营养级相互作用通过微生物残体积累以支持干旱生物结皮中土壤碳封存


5


结论

本研究揭示了旱地生态系统中碳固存的一种新机制,即土壤微型食物网中的多营养级相互作用调控着微生物残体的积累,同时也为了解土壤微生物残体的动态变化和稳定性提供了新的视角。



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 10 - 10
    13C固体核磁共振方法简述为了提高固体核磁共振测定的精确度,土壤样品在进行核磁共振分析前先用氢氟酸(HF)进行预处理。预处理方法如下:称量8克土壤样品于100mL塑料离心管中,加50mLHF(体积分数10%)溶液,摇床上振荡1h(25℃,200r/min),离心机上3800 r/min离心5min,弃去上清液,残余物继续用HF溶液处理。共重复处理8次,摇床时间依次是:第1-4次1h,第5-7次12h,最后1次24h。处理过后的残余物用蒸馏水清洗后以除去其中的HF溶液,方法如下:加50mL蒸馏水,振荡10min,离心5min(3800r/min),去掉上清液,整个过程重复4次。残余物在40℃的烘箱中烘干,过60目筛后置于密室袋中,备NMR上机测定。数据示例点击放大查看红外光谱方法简述土壤样品的光谱特征使用傅立叶变换红外吸收光谱进行分析。将干燥的样品与干燥的KBr(样品:KBr = 1:80的比例)在玛瑙研钵中汇合均匀并研磨至粉末状(粒度 < 2 μm),压成透明薄片。用傅立叶变换红外光谱仪(Spectrum 100; PerkinElmer, MA, USA)扫描测定并记录其光谱。光谱数据进一步用Omnic 8.3软件(Thermo Nicolet Corporation, USA)分析。根据前人的研究,我们选择了4个波峰区域来分析土壤C官能团特征并计算峰面积比:alkyl-C(2985 - 2820 cm-1);aromatic C=C(1800 - 1525 cm-1); O-alkyl-C(1185 - 915 cm-1) and aromatic CH(855 - 740 cm-1)(Pengerud et al., 2013)。基于峰面积比,我们计算了土壤SOM的疏水性指数(HI,alkyl-C/SOC)和芳香度指数(AI,alkyl-C/O-alkyl-...
  • 点击次数: 0
    2025 - 09 - 29
    BAIHUI文献解读原名:Heavy metal contamination threats carbon sequestration of paddy soils with an attenuated microbial anabolism.译名:重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱。期刊:GeodermaIF:6.6发表日期:2025.8第一作者:熊丽 江西省农业科学院土壤与肥料及资源环境研究所(熊丽课题组)01背景耕地中的土壤有机碳(SOC)不仅是土壤肥力和生产力的基础,更在缓解气候变化中发挥着重要作用——仅表层1米的土壤中就储存着全球SOC总量的近10%。SOC的生态功能主要取决于其循环转化与长期存留能力,而这些过程极易受到重金属污染等环境压力因素的显著影响。近百年来人类活动的密集开发,使农田土壤重金属污染日益严重,已成为威胁土壤健康和粮食安全的全球性问题。作为土壤碳循环的主要调控者, 微生物如同“针眼”般精准调控着有机质碳的转化过程,且对重金属具有高度敏感性。因此,重金属污染对微生物介导SOC转化的影响正引发学界越来越多的关注。图1:研究区及沿县岔河13个采样点位置示意图02科学问题(1)重金属污染会降低微生物可利用碳元素(CUE)并加速生物量周转;(2)微生物合成代谢能力减弱将显著影响污染稻田土壤中有机碳的变化。03材料与方法(1)本次实地考察在自1934年开采至2020年关闭的小龙钨矿周边展开。属亚热带季风气候区,年均气温18.6℃,年均降水量1726毫米。 (2)水稻种植是该地区最主要的农业类型,采用典型的早稻-晚稻轮作制度。 (3)在河流上下游13个采样点采集土壤样本 (图1),每个采样点选取三块相邻的稻田作为三重复样本。每块稻田内设置五个2×2米样方,每个样方从表层(0-20厘米)随机采集五个直径2.5厘米的土...
  • 点击次数: 0
    2025 - 09 - 09
    原名:Aggregate size mediates the stability and temperature sensitivity of soil organic carbon in response to decadal biochar and straw amendments译名:团聚体尺寸调控长期生物炭与秸秆添加下土壤有机碳的稳定性及温度敏感性期刊:Soil Biology & BiochemistryIF:10.3发表日期:2025年9月3日BAIHUI ORGANISMS作者简介第一作者:陈雅兰,北京师范大学环境学院励耘博士后,师从孙可教授。主要从事生物炭环境地球化学行为及环境效应的研究。以第一作者在GCB、SBB、EST、CEE等期刊上发表学术论文19篇(含共一3篇),1篇封面文章,1篇入选ESI高被引论文,引用800次,H指数17。主持国家自然科学基金青年项目、博士后基金站中特别资助、博士后基金面上项目。曾获宝钢优秀学生特等奖、北京市优秀毕业生、北师大优秀博士学位论文等荣誉。通讯作者:孙可,北京师范大学环境学院教授、博士生导师,国家杰出青年基金、国家优秀青年科学基金和北京市杰出青年基金获得者。主要从事生物炭环境地球化学行为及环境效应的研究。在GCB、SBB、EST等期刊上发表高质量SCI论文130余篇,他引7000余次,H指数51,5篇论文入选ESI高引论文。高群,北京师范大学环境学院副教授,主要从事土壤微生物学研究。相关研究成果在PNAS、Nature Communications(2篇)等国际期刊发表高质量SCI论文40篇,引用1200余次,H指数21。授权国家专利2项。荣获中国微生物生态青年科技创新优秀奖,入选中国科协青年人才托举工程及中国科协“未来女科学家计划”。01背景土壤有机碳(SOC)的温度敏感性(Q10)是调控土壤-气候反馈的关键...
  • 点击次数: 0
    2025 - 09 - 04
    土壤中隐藏着一种特殊的"身份证"——氨基糖,它能准确告诉我们土壤中微生物的活动痕迹。栢晖作为一家专业检测团队,我们每天都要处理几十份土壤样品,很多科研工作者对氨基糖检测有一些疑问。今天我们就一起看看吧~为什么氨基糖检测如此重要?土壤氨基糖是一类含有氨基和羟基的糖类化合物,主要来源于微生物细胞壁的残留物。它们就像微生物在土壤中留下的"指纹",具有三大独特价值:稳定性高:能在土壤中长期保存,不易降解来源明确:不同氨基糖代表不同微生物来源(如真菌/细菌)指示性强:通过各组分的比值能反映微生物群落变化常见的四种氨基糖各司其职:氨基葡萄糖:主要来自真菌氨基半乳糖:细菌和部分真菌来源胞壁酸:细菌特有标志物氨基甘露糖:辅助判断微生物群落结构解密GC-MS检测全流程在栢晖实验室,我们采用气相色谱-质谱联用技术(GC-MS)进行氨基糖检测,整个过程犹如一场精密的"分子侦探"行动:第一步:酸水解破壁称取0.5-1.0g土样,加入6mol/L盐酸,在105℃烘箱中水解8小时。这个步骤就像打开微生物的"保险箱",将结合态的氨基糖释放出来。第二步:多重净化除杂通过旋蒸、pH调节、离心等步骤去除干扰物。特别是采用甲醇溶解和氮吹浓缩,确保目标物质纯度。这个阶段堪称实验成败的关键,我们的技术员需要像"分子厨师"一样精准把控每个参数。第三步:衍生化处理加入衍生试剂后,在80℃水浴中进行两步衍生反应。这一步让氨基糖"穿上检测外衣",变得容易被仪器识别。实验记录显示,衍生时间相差5分钟就可能导致10%以上的结果偏差。第四步:GC-MS分析将处理好的样品注入气相色谱-质谱联用仪,通过保留时间和特征离子进行定性与定量分析。我们的仪器可以检测到ppb级别的氨基糖含量,灵敏度堪比"分子显微镜...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务