028-8525-3068
新闻动态 News
News 行业新闻

区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

日期: 2021-08-20
标签:

标题:Soil carbon persistence governed by plant input and mineral protection at regional and global scales

论文idhttps://doi.org/10.1111/ele.13723


原名:Soil carbon persistence governed by plant input and mineral protection at regional and global scales

译名:区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

期刊:Ecology Letters

IF:8.665

发表时间:2021.03.11

第一作者:陈蕾伊

通讯作者:杨元合

主要单位:中国科学院植物研究所


摘要

阐明影响土壤有机质(SOM)持久性的潜在过程是预测土壤碳-气候反馈的前提。然而,大地理尺度上植物碳(C)输入调控多层土壤SOM存留的潜在作用仍然不清晰。基于在青藏高原开展的大尺度土壤放射性碳(Δ14C)测定,我们发现尽管表土层Δ14C与气候、矿物性质和SOM化学组成有重要的联系,植物C输入是造成表层土壤C不稳定的主要贡献者。与之相反,铁铝氧化物和阳离子的矿物保护在深层土壤SOM留存中更为重要。这些区域性的观测结果得到了全球土壤放射性碳数据库(ISRaD)的全球整合结果的证实。我们的研究结果阐明了植物C输入对不同土壤层SOM持久性的差异化影响,为模型更好地预测变化环境下多层土壤的C动态提供了新见解。


研究背景

土壤是陆地生物圈中最大的碳储量,在全球碳循环中具有举足轻重的地位。土壤碳的微小损失也可能强烈地影响大气二氧化碳(CO2)浓度,并触发对气候变暖的潜在正反馈。由于对土壤SOM的稳定和不稳定机制认识不足,有关土壤C命运的预测模型仍然存在很大不确定性。曾有报道表示地球系统模型高估了土壤C周转率超过6倍,部分原因是这些模型缺乏对SOM稳定机制的完整描述。因此,要准确预测土壤C动态及其对气候变暖的潜在反馈,就必须深入了解大地理尺度上SOM持久存在的潜在机制。

放射性碳(14C)是研究不同时间尺度碳动力学的有效工具。土壤放射性碳含量已被广泛认可用以表征SOM持久性。基于14C,先前的研究已经提出了影响SOM稳定或不稳定的多种因素。其中,气候通常被视为一个重要的调控因素,例如,冻结温度和水淹条件有助于SOM的长期储存。除了气候调节外,由于SOM内在的化学顽抗性,SOM性质也可以通过选择性保护来调节土壤C动态,并且矿物-有机复合体的形成能抑制SOM分解。此外,以凋落物和根际沉积物形式的植物C输入会诱导激发效应(植物C输入驱动微生物对SOM的消耗),可能不利于SOM的长期留存。然而,与前三个因素相比,在广泛的地理尺度上,植物C输入在调节SOM持久性中的潜在作用仍不清楚。植物C输入的潜在作用和其他因素的交互作用可能会沿着土壤剖面发生变化,而目前缺乏关于探索植物C输入在不同土壤深度以及与其他因素之间的相对重要性的实证研究。


研究内容

本研究利用青藏高原2200km草原样带30个采样点的样品,测定了土壤表土(0-10cm)和底土(30-50cm)的放射性碳含量。为了探索广泛地理尺度上SOM持久性的主要驱动因素,我们综合了气候和植物C输入数据,并测定了与两层土壤矿物保护和SOM化学组成相关的变量。利用国际土壤放射性碳数据库(ISRaD)的数据,我们进一步评估了全球范围内SOM持久性的土壤深度依赖调控的普遍性。我们假设两个土层对SOM储存的主要控制因素可能不同,气候和植物C输入主导了表土,而底土则受矿物保护主导。


主要结果

01
土壤Δ14C的空间格局及其控制因素

土壤Δ14C在两个土层间表现出明显的空间分布格局。

表层土壤 Δ14C值由青藏高原东部向西部呈下降趋势 (图.1a)。同样地,表土的植物C输入和SOCD也表现出从东向西的下降趋势(图.1c、e),而连二亚硫酸根萃取的 Fe/Al 和可交换的 Ca2+ 与 SOC和HIX 的摩尔比则表现出由东向西上升的趋势(图.c,、e)。结果表明,Δ14C值较高的土壤,植物C输入量和SOCD输入量较高,而矿物保护和腐殖化SOM较低。

底土Δ14C范围为−573.5‰至−41.3‰(图.1b),平均比表土低7倍。此外,与表土相比,底土Δ14C没有表现出明显的空间模式。底土Δ14C仅与Fe+ Ald和SOC、和HIX的摩尔比呈负相关。底土Δ14C与植物C输入或土壤 SOCD无显著相关性(图. 1g、h)。

区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

1.青藏高原草地土壤放射性碳丰度的空间分布(Δ14C,a-b),植物C输入(c-d)和土壤SOC密度(SOCD,e-f)及其与表土和底土中Δ14C(g-h)的关系。表土的植物C输入量估计为地上净初级生产力(ANPP)和分配到0-10cm(BNPP0-10)的地下净初级生产力之和;底土的植物C输入估计为30–50 cm(BNPP30-50)的BNPP。背景图代表了整个研究区域的海拔高度。


02
区域和全球尺度上对土壤Δ14C主导控制

前面所涉及的四种因素和土壤Δ14C有着显著相关性,但控制植物特性的作用后,表层土壤Δ14C与气候、矿物性质和SOM成分的相关系数分别下降了87.8% 、68.4% 和115.0% (图. 2a)。相比之下,植物特性,尤其是NDVI和EVI,总是与表土Δ14C显著相关,即使是在控制了其他三种因素的情况下也是如此。与表土相反,底土Δ14C仅与矿物性质和HIX显著相关。此外,Feo+Alo和Mgexe与SOC的摩尔比是与底土Δ14C显著相关的唯二变量,即使是在控制了气候、植物C输入和SOM化学成分的作用后(图. 2b)。


 区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

2. 土壤放射性碳丰度的偏相关分析(Δ14C)以及导致表土和底土中SOM稳定和不稳定的四种因素。最外圆表示与土壤相关的因子(即气候(CL)、植物C输入(PL)、矿物保护(MI)和SOM化学组成(CO)与Δ14C的相关性检验。



图3a的SEM分析表明,植物C输入是最终模型中的单一直接控制,对表土Δ14C有较强的正效应。气候通过对植物C输入的正效应对表土Δ14C实现间接控制。相应地,图3b的SEM分析表明Δ14C主要直接受矿物性质控制,而气候和植物C输入对土壤Δ14C空间变异的影响较小。

区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

3结构方程模型(SEM)揭示了气候、植物C输入、矿物保护和SOM化学组成对土壤放射性碳丰度的直接和间接影响(Δ14C)及其标准化的直接和间接影响(a)表土的SEM和(b)底土的SEM。单头箭头:因果关系的假设方向;红色和蓝色实心箭头:积极和消极的关系;灰色虚线箭头;不重要的关系;红色和蓝色箭头的宽度与关系的强度成正比;箭头旁的数字;标准化路径系数。


全球综合结果显示,表土Δ14C与植物C输入(图. 4a-d)和气候因子(图. 4a-d)紧密相关。与气候和植物C输入相比,矿物质与SOC的比值与深层土壤中的Δ14C密切相关(图. 4e–h)。这些结果强调了在青藏高原草原上观测到的土壤碳持久性的深度依赖控制可以推广到全球范围。

区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

4全球范围内的表土(绿点)和深层土壤(橘色)中土壤碳丰度(Δ14C)与植物C输入和矿物保护的相关性。植物C输入变量包括(a)标准化植被指数(NDVI),(b)增强植被指数(EVI),(C)叶面积指数(LAI)和(d)净初级生产力(NPP)。矿物保护变量包括(e)dithionite-extractable连二亚硫酸钠可提取铁(Fed),(f)草酸盐可提取铁(Feo),(g)连二亚硫酸钠可提取铝(Ald)和(h)草酸盐可提取铝(Alo)与SOC的摩尔比。


总结

本研究区域观测的结果和全球综合结果一致地证明,土壤层之间土壤碳持久性的主要决定因素是不同的。首次量化了植物C输入相对于其他因素的相对重要性。尽管表土Δ14C与多种因素显著相关,但植物C输入主要控制表层土壤碳的长期储存,而矿物保护则主要在底土起作用。本研究利于加深对环境变化下土壤C动态的了解,有助于C-气候反馈模型的完善。

  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 11 - 24
    土壤是一个复杂的三相(固、液、气)多孔介质,其物理结构(如团聚体、孔隙度)是一切生命活动的基础。微塑料的存在会改变孔隙结构、影响水分运移、影响气体交换等等,它可以吸附环境中的重金属、持久性有机污染物等,成为这些有毒物质的“载体”,改变它们在土壤中的分布和生物有效性,加剧复合污染。微塑料的测定方法主要有上述提到的光谱法、显微分析法和热裂解法等,如下是热裂解测定方法介绍。BAIHUI微塑料定性定量测定分析可测定12种主要微塑料!聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、丙烯腈-丁二烯-苯乙烯树脂(ABS)、丁苯橡胶(SBR)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚氯乙烯(PVC)、聚氨酯(PU:MDI型)、聚对苯二甲酸乙二醇酯(PET)、尼龙6(N6)、尼龙66(N66)01微塑料测定流程方法简述:称取过2 mm筛的风干土壤5 g于250 mL烧杯中,加入50 mL饱和氯化钠溶液,磁力搅拌30 min。静置3 h,悬浮上清液倒入250 mL烧杯。改用50 mL ZnCl2(密度约1.6 g/cm3)浮选一次,磁力搅拌30 min,静置3 h,上清液倒入前述250 mL烧杯。将250 mL烧杯中液体用不锈钢滤膜抽滤,收集滤膜,加30 mL过氧化氢,超声10 min, 60 ℃加热24 h。收集溶液,用不锈钢滤滤膜抽滤,收集滤膜,晾干备用。将滤膜放入烧杯,加有机溶剂,超声10 min,溶剂浓缩至1 mL。取50 μL至80 μL裂解样品杯,通风橱内挥干,加CaCO3稀释剂2 mg,少量玻璃棉覆盖,待测。校准曲线绘制称取以CaCO3稀释剂为基质的微塑料标准物质(12种微塑料),0.1、0.5、1.0、2.0、4.0 mg,加入至裂解样品杯中,少量玻璃棉覆盖,配制成标准系列。02测定结果展示03分析软件-F-Sear...
  • 点击次数: 0
    2025 - 11 - 05
  • 点击次数: 0
    2025 - 10 - 10
    13C固体核磁共振方法简述为了提高固体核磁共振测定的精确度,土壤样品在进行核磁共振分析前先用氢氟酸(HF)进行预处理。预处理方法如下:称量8克土壤样品于100mL塑料离心管中,加50mLHF(体积分数10%)溶液,摇床上振荡1h(25℃,200r/min),离心机上3800 r/min离心5min,弃去上清液,残余物继续用HF溶液处理。共重复处理8次,摇床时间依次是:第1-4次1h,第5-7次12h,最后1次24h。处理过后的残余物用蒸馏水清洗后以除去其中的HF溶液,方法如下:加50mL蒸馏水,振荡10min,离心5min(3800r/min),去掉上清液,整个过程重复4次。残余物在40℃的烘箱中烘干,过60目筛后置于密室袋中,备NMR上机测定。数据示例点击放大查看红外光谱方法简述土壤样品的光谱特征使用傅立叶变换红外吸收光谱进行分析。将干燥的样品与干燥的KBr(样品:KBr = 1:80的比例)在玛瑙研钵中汇合均匀并研磨至粉末状(粒度 < 2 μm),压成透明薄片。用傅立叶变换红外光谱仪(Spectrum 100; PerkinElmer, MA, USA)扫描测定并记录其光谱。光谱数据进一步用Omnic 8.3软件(Thermo Nicolet Corporation, USA)分析。根据前人的研究,我们选择了4个波峰区域来分析土壤C官能团特征并计算峰面积比:alkyl-C(2985 - 2820 cm-1);aromatic C=C(1800 - 1525 cm-1); O-alkyl-C(1185 - 915 cm-1) and aromatic CH(855 - 740 cm-1)(Pengerud et al., 2013)。基于峰面积比,我们计算了土壤SOM的疏水性指数(HI,alkyl-C/SOC)和芳香度指数(AI,alkyl-C/O-alkyl-...
  • 点击次数: 0
    2025 - 09 - 29
    BAIHUI文献解读原名:Heavy metal contamination threats carbon sequestration of paddy soils with an attenuated microbial anabolism.译名:重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱。期刊:GeodermaIF:6.6发表日期:2025.8第一作者:熊丽 江西省农业科学院土壤与肥料及资源环境研究所(熊丽课题组)01背景耕地中的土壤有机碳(SOC)不仅是土壤肥力和生产力的基础,更在缓解气候变化中发挥着重要作用——仅表层1米的土壤中就储存着全球SOC总量的近10%。SOC的生态功能主要取决于其循环转化与长期存留能力,而这些过程极易受到重金属污染等环境压力因素的显著影响。近百年来人类活动的密集开发,使农田土壤重金属污染日益严重,已成为威胁土壤健康和粮食安全的全球性问题。作为土壤碳循环的主要调控者, 微生物如同“针眼”般精准调控着有机质碳的转化过程,且对重金属具有高度敏感性。因此,重金属污染对微生物介导SOC转化的影响正引发学界越来越多的关注。图1:研究区及沿县岔河13个采样点位置示意图02科学问题(1)重金属污染会降低微生物可利用碳元素(CUE)并加速生物量周转;(2)微生物合成代谢能力减弱将显著影响污染稻田土壤中有机碳的变化。03材料与方法(1)本次实地考察在自1934年开采至2020年关闭的小龙钨矿周边展开。属亚热带季风气候区,年均气温18.6℃,年均降水量1726毫米。 (2)水稻种植是该地区最主要的农业类型,采用典型的早稻-晚稻轮作制度。 (3)在河流上下游13个采样点采集土壤样本 (图1),每个采样点选取三块相邻的稻田作为三重复样本。每块稻田内设置五个2×2米样方,每个样方从表层(0-20厘米)随机采集五个直径2.5厘米的土...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务