028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 黄土高原植被演替过程中,顽固性有机碳在土壤固碳中起着关键作用

日期: 2023-10-11
标签:

文献解读基本信息:

原名:Recalcitrant organic carbon plays a key role in soil carbon sequestration along a long-term vegetation succession on the Loess Plateau

译名:黄土高原植被演替过程中,顽固性有机碳在土壤固碳中起着关键作用

作者:石经纬

期刊:Catena

影响因子/分区:6.2 /Q1

发表时间:2023.09.18

摘要:

植被恢复能有效改善土壤质量,增强土壤有机碳(SOC)固存。然而,长期植被演替过程中有机碳组分的动态变化及其驱动因素尚不清楚。本研究利用农田到顶极森林的完整的~160年时间序列,研究了表层土壤(0~20 cm)和底层土壤(20~40 cm)有机碳组分的动态及其驱动因素。结果表明,植被演替年龄对土壤有机碳及其组分有显著影响(p<0.05)。土壤有机碳组分含量随演替年龄的增加而增加,其中顽固性有机碳(ROC)占总有机碳的62%~85%。长期植被演替增强了有机碳库的稳定性,降低了活性碳的比例,促进了碳的固定。ROC是整个剖面有机碳积累的最佳指标。当植被演替达到拓荒林阶段(~110年)时,由于持续的植物生物量输入,土壤有机碳含量和组分显著增加(p<0.05)。此外,土壤碳的固存受表层土壤全氮含量和地下土壤生物量的控制。研究结果表明,长期植被演替可有效提高土壤有机碳积累和有机碳库质量,未来气候变化条件下土壤有机碳库稳定机制有待进一步研究。

关键词:

植被演替、顽固性有机碳、土壤有机碳组分、稳定碳库、碳库管理指标

研究背景:

黄土高原植被稀疏,土壤有机碳(SOC)含量低,是全球碳(C)固存潜力最高的地区之一。了解生态系统的有机碳动态对于植被恢复至关重要,特别是在将农田转化为自然恢复的草原或森林时。子武岭地区经历了近160年的次生演替,是黄土高原独特的退耕后植被自然演替序列完整的地区。因此,该区域可以更好地了解长期植被演替过程中的有机碳动态,这对准确估算陆地环境土壤C通量和指导生态系统恢复具有重要意义。

植被演替改变凋落物和根系输入的质量和数量,对土壤有机质(SOM)的形成和稳定性有积极或消极的影响。SOM再生是影响植物残体有机碳含量和分布的关键第一步。然而,了解有机碳含量的动态仅限于评估植被演替,因为有机碳组分的敏感性和周转期不同。功能有机碳库的分类对于理解有机碳质量对植被演替的响应至关重要。为了更好地了解有机碳库,通常采用物理和化学方法对有机碳进行分组。有机碳通常分为活性碳和稳定碳两部分。挥发性有机碳(LOC)、颗粒性有机碳(POC)、微生物生物量碳(MBC)和溶解性有机碳(DOC)是易矿化、对植被演变敏感、影响养分供应的活性有机碳组分。顽固性有机碳(ROC)和矿物伴生有机碳(MAOC)是稳定的有机碳组分,可以在土壤中存在数千年,强烈影响陆地碳汇。以往关于植被演替的研究大多集中在有机碳、储量和部分有机碳组分。然而,关于植被演替对土壤有机碳含量影响的系统、完整的研究还很少。

土壤有机碳积累主要受土壤和植物性质的影响,土壤pH值、土壤含水量都会影响土壤有机碳的积累,土壤团聚体对有机碳提供物理保护,并影响有机碳分数。有报道表明,在撂荒后的自然恢复过程中,大团聚体的增加促进了MAOC和POC的积累。植物C输入是有机碳的主要来源,分析植物特性有助于理解有机碳积累。最近的一项研究表明,植物源碳储量及其对总体有机碳的贡献随着演替而增加。因此,了解植物和土壤因子在有机碳组分和稳定性中的相对作用是预测植被演替后碳动态的必要条件。

植被演替对土壤有机碳含量的影响随土壤深度的变化而变化。例如,只有20-100 cm层的DOC和0-20 cm层的MBC和POC对人工林和果园向天然林的演替敏感。在草地生态系统中,放牧对20-60 cm土层POC/SOC和MAOC/SOC的影响不显著。表层SOC对植被演替的响应有一定的认识。然而,在长期植被演替过程中驱动土壤剖面有机碳库的机制以及最能反映有机碳积累的有机碳分数尚不清楚。

为了进一步提高黄土高原的碳固存效益,确定植被演替后有机碳库的稳定性及其驱动机制至关重要,特别是考虑到对长期(>100年)效应知之甚少。为了回答这些问题,我们选择了大约5、15、30、60、110、140和160年前从农田转变而来的地区。我们的目标是:(1)确定表层土壤和底土有机碳组分对长期植被恢复的响应;(2)确定驱动有机碳组分的关键因素;(3)确定哪些有机碳组分最能反映有机碳积累。因此,我们假设:(1)长期植被演替会增加表层土壤和底土中有机碳及其组分的含量,尤其是稳定的有机碳组分;(2)地下生物量会强烈影响有机碳及其组分的积累;(3)ROC比其他组分更能反映有机碳积累。

研究区域概况:

本研究在中国甘肃省子武岭地区(35°03′-36°37′n, 108°10′-109°18′e,海拔1211-1453 m)的连家砭林场进行。该地区面积约为23,000平方公里。该地区年平均气温10℃,年平均降雨量587 mm,积温2760℃。 本研究使用了过去160年的8个完整的长期植被演替阶段。这些阶段分别是:(1)农田阶段(0年),(2)废弃农田阶段(~5年),(3)先驱杂草阶段(~15年),(4)草地阶段(~30年),(5)灌丛阶段(~60年),(6) 拓荒林阶段(~110年),(7)混交林阶段(~140年),(8)顶极森林阶段(>160年)(图1)。选择农田阶段(种植玉米)作为对照场地。

文献解读| 黄土高原植被演替过程中,顽固性有机碳在土壤固碳中起着关键作用

图1 黄土高原研究点(a)和采样点地图(b),以及研究点在各演替阶段的照片(c)

结果:

1、植被演替对土壤有机碳及其组分的影响

植被演替显著促进了0~40 cm土层SOC及各组分的积累,且各组分和演替阶段表层土壤碳含量均显著高于底土(图2,p < 0.05)。在演替的前60年(灌木丛阶段(~60年)),土壤有机碳含量和组分呈先降低后增加的趋势(图2)。植被演替约30年后,即草地阶段,碳含量恢复到初始水平(农田)(图2)。灌木阶段后,SOC含量和组分含量较中期(30 ~ 60年)显著增加(图2,p < 0.05)。当植被演替达到拓荒林阶段(> 110年)时,C含量逐渐趋于稳定(图2)。此外,演替年龄和土壤深度对土壤POC、MAOC、LOC、ROC、MBC和SOC含量均有显著影响(图2a-g, p < 0.05)。

文献解读| 黄土高原植被演替过程中,顽固性有机碳在土壤固碳中起着关键作用

图2 0~20 cm和20~40 cm各演替阶段土壤碳组分含量。FL:农田;AF:废弃的农田;PW:先锋杂草;GL:草原;SL灌木丛;PF: 拓荒林;MF:混交林;CF:顶极森林。


2、植被演替对土壤有机碳稳定性的影响

长期植被演替过程中,SOC以ROC为主(62% ~ 85%),MBC最小(0.8% ~ 4%)(图3)。与农田相比,植被演替至顶极森林阶段显著提高表层土壤和底土LOC/SOC (图3c, p < 0.05),两种土壤深度的MBC/SOC、DOC/SOC和ROC/SOC随演替均呈现先升高后降低的趋势(图3-d)。特别是,底土的DOC/SOC和ROC/SOC比高于表层土(图3b和3d)。表层土壤和底土的POC/SOC和MAOC/SOC随长期演替变化不显著(图3e-f, p > 0.05)。

文献解读| 黄土高原植被演替过程中,顽固性有机碳在土壤固碳中起着关键作用

图3 0 ~ 20 cm和20 ~ 40 cm各演替阶段土壤碳组分的分布特征


在碳库管理方面,CPI%、A%、AI%和CMPI%均随植被演替而显著增加(表1,p < 0.05)。与农田相比,160年植被演替导致表层土壤有机碳储量增加36%,下层土壤有机碳储量增加61%(表1)。演替年龄和土壤深度对CPMI和有机碳储量的交互作用显著(表1,p < 0.05)。

文献解读| 黄土高原植被演替过程中,顽固性有机碳在土壤固碳中起着关键作用

表1 各演替阶段碳库管理指数及演替阶段与土壤深度及其相互作用的双向方差分析结果。CPI:碳库指数;A:碳库活动;AI:碳库活动指数;CMPI:碳库管理指数。


3、土壤有机碳及其组分的驱动因素

RDA模型表明,土壤和植物特征可以很好地解释0-40 cm土层SOC及其组分(98-99%)的变化(图4)。总体而言,LOC、POC、MAOC、DOC、MBC和ROC与砂、SW、BGB、LB、TN、PCC和AGB呈正相关,与BD、粘土、TP和粉砂呈负相关;土壤有机碳与TN呈正相关,与BD和粘土呈负相关(图4)。逐步回归分析表明,SOC及其组分由表层土壤的全氮含量(TN)和底土的地下生物量(BGB)决定(表2)。

文献解读| 黄土高原植被演替过程中,顽固性有机碳在土壤固碳中起着关键作用

图4 植被演替对0 ~ 20 (a)、20 ~ 40 (b) cm土壤有机碳及其组分的冗余分析(RDA)。植物和土壤特性被用作环境变量。

文献解读| 黄土高原植被演替过程中,顽固性有机碳在土壤固碳中起着关键作用

表2长期植被演替过程中实测有机碳及其组分与决定因子的逐步回归(n = 5)。年龄作为对照变量。


4、土壤有机碳含量与影响因素之间的通径关系

结构方程模型(SEM)显示了土壤有机碳含量与影响因素之间的通径关系(图5)。在0~40 cm土壤深度,土壤有机碳含量的变化受Age、BGB、TN、MAOC和ROC直接或间接的驱动。ROC直接影响表层土和底土有机碳含量(图5a-b)。此外,BGB和TN直接调节了两个土层深度的ROC含量(图5a-b)。在表层土壤中,Age、BGB、TN、MAOC和ROC对有机碳的总影响分别为0.89、0.1、0.57、- 0.1和0.77(图5c)。在底土中,该值分别为0.73、0.68、0.24、- 0.2和0.92(图5d)。这些结果表明ROC在有机碳积累中起重要作用。

文献解读| 黄土高原植被演替过程中,顽固性有机碳在土壤固碳中起着关键作用

图5 结构方程模型(SEM)分析了0-20 (a)、20-40 (b) cm土壤深度土壤有机碳及其影响因子,以及0-20 (c)、20-40 (d) cm土壤深度土壤有机碳影响因子的标准化总效应。红线和蓝线分别表示正系数和负路径。箭头上的数字表示路径系数。线粗表示路径系数的大小。R2值表示每个内生变量的方差解释比例。

本研究的局限性及未来发展方向:

本研究为长期植被演替过程中有机碳组分的响应模式和驱动机制提供了系统、全面的研究(图6)。然而,本研究也存在必须考虑的局限性。本研究仅关注黄土高原单一地区,其他地区或生态系统的结果可能会有所不同。此外,其他可能影响有机碳含量的因素,如土壤微生物特征未被考虑。为了更深入地了解土壤有机碳固存的机制,需要进一步研究土地利用方式、微生物和土壤性质对有机碳组分的交互作用。此外,未来的研究可以在中国全区域和全球尺度上探讨不同土地管理策略对土壤有机碳含量的影响。

文献解读| 黄土高原植被演替过程中,顽固性有机碳在土壤固碳中起着关键作用

图6 植被长期演替过程中有机碳库控制因素概念图

结论:

长期植被演替显著增加了土壤有机碳和稳定组分的含量,导致表层土壤碳积累量高于底土。长期演替通过降低活性有机碳库的比例,提高了土壤有机碳的稳定性,改善了土壤质量。土壤性质和植物投入对有机碳及其组分有显著影响。土壤全氮含量是促进土壤有机碳及其组分在演替过程中积累的最重要因子,而地下生物量对土壤有机碳及其组分的变化具有强烈的控制作用。由于其稳定的性质和与植物C输入有关,ROC被认为是反映有机碳积累的最佳分数。此外,该研究支持了我们的假设,并表明在严重水土流失地区,长期植被演替有可能改善有机碳积累。


  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 01 - 09
    文献解读原名:Decadal application of mineral fertilizers alters the molecular composition and origins of organic matter in particulate and mineral-associated fractions译名:十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成和来源期刊:SBBIF:9.8发表时间:2023.07第一作者:Zhichao Zou摘要背景:长期矿质施肥对土壤有机质(SOM)的数量、质量和稳定性的影响仍不明确。方法:通过结合四种生物标志物(自由与结合态脂类、木质素酚和氨基糖),研究中国北方农田在10年矿质施肥下(400 kg N ha−1 yr−1, 120 kg P ha−1 yr−1 和 50 kg K ha−1 yr−1)的SOM的分子组成、分解和来源。我们关注于两个差异化的SOM组分:颗粒态有机质(POM)和矿质结合态有机质(MAOM)。结果:尽管施肥对全土SOC的影响有限,但导致MAOM中SOC增加23%,并且改变了其组成和来源。施肥使POM中植物源的萜类化合物增加46%,MAOM中长链脂类(≥20)增加116%,但是降低了POM中54%的短链脂类(结论:矿质施肥通过改变温带农业生态系统中矿物-有机复合体的分子组成和固存,增加SOM的稳定性和持久性。研究背景SOM能够维持土壤肥力、促进土壤水分存留和有机碳(SOC)固存,对农业生态系统的功能的发挥至关重要。在典型的农田,大量矿质肥料的输入增加了作物生产力,导致大量的碳(C)通过残体、根系及其分泌物进入土壤,随后改变了SOM周转。然而,我们对SOC稳定和固存对营养施肥的响应方向和程度的基础理解仍然不明确。之前的研究报道了农业生态系统中施肥管理导致更高、中性以及甚至更低的SOC水平。在集...
  • 点击次数: 0
    2025 - 01 - 02
    文献解读原名:Temperature-dependent soil storage: Changes in microbial viability and respiration in semiarid grasslands译名:随温度变化的土壤储存:半干旱草原微生物活力和呼吸作用的变化期刊:Soil Biology and BiochemistryIF:9.8线上发表日期:2024年12月发表日期:2025年3月通讯作者:田建卿(中国科学院植物研究所)亮点(1)相比于-20℃,在4℃下储存土壤细胞的存活率更高。(2)在 4 °C 下温和解冻 3 天可优化冻土中的细胞活力。(3)土壤呼吸对储存的响应取决于土壤类型。背景土壤微生物是生物地球化学循环的关键引擎,也是土壤有机碳 (SOC) 分解和稳定的关键驱动因素。理想情况下,研究人员应在取样后立即对新鲜土壤进行大多数微生物活动和微生物介导的土壤生物地球化学分析,然而,由于实际限制,在低温下储存土壤是土壤微生物学研究中的常见做法,可能会影响微生物活力和微生物介导的呼吸作用,几十年来,不适当的储存条件导致了已发表的研究中相互矛盾的结论。目前对储存过程中活微生物参数的变化和微生物介导的呼吸仍然缺乏了解。材料与方法(1)于2022年8月和2023年5月在从内蒙古草原生态系统研究站(IMGERS;116◦42′E,北纬43°38′,海拔约1260米)。中国内蒙古自治区采集了4种类型的土壤,包括大针茅(S.grandis)、羊草(L.chinensis)、西林河流域草甸(湿地)和浑善达克沙地(沙质)土壤。之后将4种类型的土壤样本分别在4℃和 -20℃下储存 0、5、40 和210天。对于在-20℃下保存的土壤,作者采用了两种解冻方法:室温下直接解冻和4 ℃下温和解冻(gentle thaw...
  • 点击次数: 0
    2024 - 12 - 06
    # 栢晖 #—特色检测指标—土壤、植物酶活检测氨基糖、PLFA及其同位素、磷组分木质素酚、CUE、有机氮组分、有机酸氨基酸、微生物量碳氮磷、同位素等苯多羧酸、红外光谱、微生物多样性等其他土壤、植物、水体等常规检测指标均可测定欢迎联系下方相关工作人员详细沟通
  • 点击次数: 0
    2024 - 11 - 29
    文献解读原名:Rhizosphere as a hotspot for microbial necromass depositioninto the soil carbon pool译名:根际是微生物残体进入土壤碳库的热点区期刊:Journal of EcologyIF: 5.3发表日期:2024.11.15第一作者:汪其同背景森林土壤是陆地生态系统最大的有机碳(SOC)库,高效发挥森林土壤碳汇功能是实现“双碳”战略目标的重要途径之一。相应地,科学认识森林土壤固碳过程与调控机制已成为当前森林生态学、土壤学领域重要的前沿基础科学问题与林业碳汇功能适应性管理的核心现实需求。近年来不断涌现的证据表明,微生物通过合成代谢而迭代积累的微生物残体很大程度上主导了SOC的长期积累和固持。其中,由于根源C持续输入在根系周围的根际微域形成了一个独特而又典型的微生物热点区,并伴随着更快的微生物生长和更强的微生物代谢活性,进而导致根际区微生物残体对长期SOC积累贡献能力比非根际区更为突出和明显。然而,目前大多研究通常将根际和非根际土壤视为一个均质有机体,而缺乏针对根际区SOC形成过程与稳定性机制的专一性试验研究,导致根际区土壤碳动态过程及其生态重要性在很大程度上未被探索和了解,已成为森林土壤碳汇功能变化认知最少且极为薄弱的关键环节之一。基于此,中国科学院成都生物研究所尹华军研究团队通过系统收集青藏高原典型高寒针叶林39个样点的根际和非根际土壤样品(图1),量化了根际和非根际土壤中有机碳和氨基糖的浓度,并通过计算根际相对于非根际土壤中增加的氨基糖与增加的有机碳的比例(RAS/SOC),评估了微生物残体对根际SOC积累的贡献程度。同时测定了根际土壤养分浓度和微生物生理性状,以揭示多变环境下根际微生物残体对SOC积累贡献的潜在微生物调控机制。图1  39个高寒针叶林采样点分布图我们假设:(1...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务