028-8525-3068
新闻动态 News
News 行业新闻

文献解读(2024.03发表)|土壤微食物网中的营养级相互作用驱动了沿树种丰富度的生态系统多功能性

日期: 2024-04-22
标签:
文献解读
BAIHUI

原名:Trophic interactions in soil micro-food webs drive ecosystem multifunctionality along tree species richness

译名:土壤微食物网中的营养级相互作用驱动了沿树种丰富度的生态系统多功能性

期刊:Global Change Biology

IF: 11.6

发表日期:2024.03

第一作者:Xiuzhen Shi



01
摘要

背景:全球气候变化导致生物多样性的快速丧失并影响森林生态系统功能。然而,我们对跨生物多样性梯度中多种生态系统功能的模式和驱动因子的理解仍然有限。

方法:本研究测量了亚热带幼林中多种生态系统功能(养分循环、土壤碳储量、有机质分解和植物生产力)对树种丰富度(1、4、8、16和32)的响应。

结果:树种丰富度对养分循环、有机质分解和植物生产力的影响可以忽略不计,但土壤碳储量和生态系统多功能性随着树种丰富度的增加而显著增加。线性混合效应模型表明,土壤生物,特别是丛枝菌根真菌(AMF)和土壤线虫,对生态系统多功能性的相对影响最大。结构方程模型揭示了土壤微食物网中营养级相互作用下树种丰富度对生态系统多功能性的间接影响。即革兰氏阳性菌对土壤线虫丰度有显著的负影响(自上而下效应),而AMF生物量对土壤线虫丰度有显著的正影响(自下而上效应)。

结论:本研究强调了多营养视角在阐明生物多样性-多功能关系的重要性,尤其是保护良好土壤微食物网的功能以维持多种生态系统功能。



02
研究背景

人为活动和相关的气候变化引发了生物多样性的严重下降,并对生态系统功能和服务提供产生了影响。森林生态系统调节有机物分解和植物生长,并支持有助于减缓全球气候变化影响的养分循环和碳固存。多功能研究使我们能够同时评估森林生态系统提供多种功能的能力,并提供与政策相关的建议。越来越多来自寒带和温带森林的证据表明,生物多样性和生态系统功能之间存在积极相关关系。然而,最近的研究强调了环境条件在形成BEFs关系中的重要性。因此,这种关系在物种相对贫乏的地区的发现是否可以转移到物种丰富的亚热带森林地区,在很大程度上仍然是未知的。

虽然植物物种丰富度是生物多样性最常用的指标,但当植物物种丰富度较高时,BEFs趋于平稳。因此,了解不同生物多样性指标对预测多变环境条件下的BEFs具有重要意义。由于生态位分配和微环境条件改变的影响,植物性状的功能多样性可能是比植物物种丰富度更有意义的预测因素。此外,系统发育多样性也可能是生态系统功能互补性效应的一个重要指标。越来越多研究表明,进化上遥远的物种更有可能表现出生态位分化和表现出促进作用。此外,系统发育多样性可以捕捉群落内影响生态系统功能的物种相互作用,例如,通过表示与病原体和食草动物等更高营养水平的相互作用。然而,很少有研究同时评估亚热带树木群落的分类、功能和系统发育多样性对生态系统多功能性的相对贡献。

土壤生物的组成和丰富度是陆地生态系统多功能性的关键驱动因素,一项来自于全球的meta分析表明,自然和人工管理的树种多样性与土壤微生物、细菌和真菌的生物量水平呈正相关,这对土壤微生物驱动的生态系统功能具有重要意义。然而,不同营养层次的土壤生物类群在驱动生态系统多功能方面的相对重要性仍然存在很大的未知性。虽然土壤细菌和真菌在调节森林生态系统功能中的作用已被广泛记录,但大多数研究忽略了更高营养水平的生物(如线虫)对生态系统功能的贡献,尽管它们在复杂的土壤微食物网中处于关键地位,并且与其他营养和功能类群类型相互作用。因此,将不同营养水平的生物整合到多功能性研究中,探讨高营养水平生物通过营养相互作用对生态系统多功能性的影响程度是十分必要的。

因此,本研究通过为期3年的野外实验,旨在探明高度多样化的亚热带森林中树木多样性(分类、功能和系统发育多样性)的多个方面的生态系统多功能性(养分循环、土壤碳储量、有机质分解、植物生产力)的模式和驱动因素。并假设(1)增加树木多样性,特别是功能和系统发育多样性,能够促进生态系统的多功能性,原因在于增加了生态位互补性和改善微环境条件;(2)土壤微食物网具有更强的群落共存和调节效应,能够直接驱动生态系统多功能性的变化。



03
主要结果

1、生态系统多功能性

树种丰富度对养分循环、有机质分解和植物生产力没有显著影响(图1)。相比之下,树种丰富度显著增加了生态系统多功能性,32种混合树种的土壤碳储量显著高于四种混合树种(p<0.05)(图S3),此外,树木物种丰富度对生态系统功能的影响在包括或不包括单一栽培的模型之间没有变化,表明当多样性从4种增加到32种时,树木多样性对生态系统多功能性具有显著影响。


文献解读(2024.03发表)|土壤微食物网中的营养级相互作用驱动了沿树种丰富度的生态系统多功能性

图1树种丰富度对养分循环、碳储量、有机质分解、植物生产力和生态系统多功能性指标的影响。


2、与生态系统功能相关的生态属性

线性混合效应模型表明,三组生态属性,土壤生物对生态系统多功能的相对影响最大(图2),其中线虫和土壤含水率有积极的影响(p=0.004, p=0.014)而AMF有负面影响(p=0.011)(表1、图2)。

养分循环与土壤微生物生物量呈正相关(p=0.026),与土壤真菌和AMF的生物量(p<0.001)和土壤pH(p=0.004)呈负相关(图3;图S4和S5)。土壤碳储量与土壤线虫的丰度呈正相关(p=0.032)。有机质分解与SWC呈正相关(p=0.023;图S4)。植物生产力与土壤微生物(p=0.027)、G−细菌(p=0.016)、真菌(p=0.011)、AMF(p<0.001)、土壤pH(p<0.001)和SWC(p=0.011)的生物量呈正相关。生态系统多功能性性与土壤线虫丰度(p=0.004)和SWC(p=0.005)呈正相关。


文献解读(2024.03发表)|土壤微食物网中的营养级相互作用驱动了沿树种丰富度的生态系统多功能性

表1生态系统特性对生态系统多功能的相对重要性的线性混合效应模型


文献解读(2024.03发表)|土壤微食物网中的营养级相互作用驱动了沿树种丰富度的生态系统多功能性

图2 树木多样性指标(黄色)、土壤生物(绿色)和环境因素(蓝色)等指标对生态系统多功能性的相对影响(左图)。线性混合效应模型参数估计(右图)以标准化回归系数±95% CIs表示。


文献解读(2024.03发表)|土壤微食物网中的营养级相互作用驱动了沿树种丰富度的生态系统多功能性

图3 土壤生物与生态系统功能关系的线性回归分析。


3、生态系统多功能性的驱动因素

不同的树木多样性指标、分类学、功能和系统发育多样性显著降低了G+细菌和真菌的生物量(p<0.05;图4)。结构方程模型一致证实了G+细菌的功能性状多样性与生物量之间的负相关关系(图5)。同时,AMF的生物量与土壤线虫丰度呈正相关(自下而上效应),G+细菌的生物量与土壤线虫丰度呈负相关(自上而下效应)。土壤线虫的丰度反过来又显著促进了生态系统的多功能性。


文献解读(2024.03发表)|土壤微食物网中的营养级相互作用驱动了沿树种丰富度的生态系统多功能性

图4 土壤生物与树木多样性指标之间关系的线性回归分析


文献解读(2024.03发表)|土壤微食物网中的营养级相互作用驱动了沿树种丰富度的生态系统多功能性

图5 树木多样性对生态系统多功能的直接和间接影响的结构方程模型



关于栢晖



栢晖生物成立于2014 年,公司致力于为生态、农业、林业等科学研究领域提供专业的检验检测服务。

公司拥有成熟、完善的实验室管理体系以及强大的实验技术团队聘请来自中国科学院、中国农业大学、四川大学等高校单位的生态、农业相关方向专家顾问十余位。

实验室的检测仪器设备齐全,拥有同位素质谱仪、元素分析仪、GC-MS、LC、总有机碳分析仪、ICP-OES 等先进设备。

如今,我们已与全国 300 多家高校及科研单位建立了密切的合作关系,年交付的实验数据量可达 100 万+,协助上万名客户完成相关科研项目,并在生态领域SBB、GCB、Catena等国际顶级期刊发表论文数十篇。

我们秉承着“公正、准确、规范、高效”的理念,竭诚为每一位客户提供专业、优质的检测服务。

文献解读(2024.03发表)|土壤微食物网中的营养级相互作用驱动了沿树种丰富度的生态系统多功能性

(实验室部分环境拍摄)



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 09 - 04
    土壤中隐藏着一种特殊的"身份证"——氨基糖,它能准确告诉我们土壤中微生物的活动痕迹。栢晖作为一家专业检测团队,我们每天都要处理几十份土壤样品,很多科研工作者对氨基糖检测有一些疑问。今天我们就一起看看吧~为什么氨基糖检测如此重要?土壤氨基糖是一类含有氨基和羟基的糖类化合物,主要来源于微生物细胞壁的残留物。它们就像微生物在土壤中留下的"指纹",具有三大独特价值:稳定性高:能在土壤中长期保存,不易降解来源明确:不同氨基糖代表不同微生物来源(如真菌/细菌)指示性强:通过各组分的比值能反映微生物群落变化常见的四种氨基糖各司其职:氨基葡萄糖:主要来自真菌氨基半乳糖:细菌和部分真菌来源胞壁酸:细菌特有标志物氨基甘露糖:辅助判断微生物群落结构解密GC-MS检测全流程在栢晖实验室,我们采用气相色谱-质谱联用技术(GC-MS)进行氨基糖检测,整个过程犹如一场精密的"分子侦探"行动:第一步:酸水解破壁称取0.5-1.0g土样,加入6mol/L盐酸,在105℃烘箱中水解8小时。这个步骤就像打开微生物的"保险箱",将结合态的氨基糖释放出来。第二步:多重净化除杂通过旋蒸、pH调节、离心等步骤去除干扰物。特别是采用甲醇溶解和氮吹浓缩,确保目标物质纯度。这个阶段堪称实验成败的关键,我们的技术员需要像"分子厨师"一样精准把控每个参数。第三步:衍生化处理加入衍生试剂后,在80℃水浴中进行两步衍生反应。这一步让氨基糖"穿上检测外衣",变得容易被仪器识别。实验记录显示,衍生时间相差5分钟就可能导致10%以上的结果偏差。第四步:GC-MS分析将处理好的样品注入气相色谱-质谱联用仪,通过保留时间和特征离子进行定性与定量分析。我们的仪器可以检测到ppb级别的氨基糖含量,灵敏度堪比"分子显微镜...
  • 点击次数: 0
    2025 - 09 - 04
    更多检测相关讯息搜栢晖生物了解更多~
  • 点击次数: 0
    2025 - 08 - 13
    栢晖分区服务升级通知2025年8月为进一步提升服务质量,优化检测服务体验,栢晖正式宣布完成技术对接团队分区服务升级!现将最新分区服务内容公告如下:
  • 点击次数: 0
    2025 - 08 - 13
    土壤氨基糖是指一类含有氨基和羟基的糖类化合物,主要来源于微生物细胞壁的残留以及微生物代谢产物。它们是土壤有机质的重要组成部分,具有较高的稳定性和微生物异源性,在土壤中能够长期保存。土壤氨基糖不仅是评估微生物对土壤有机碳、氮贡献的重要指标,还能通过不同组分的比值反映微生物群落组成的变化。常见的土壤氨基糖包括氨基葡萄糖、氨基半乳糖、氨基甘露糖和胞壁酸等,它们在土壤生态系统的物质循环和结构稳定中发挥着关键作用。土壤氨基糖来源:微生物合成:大部分来源于微生物残体(真菌/细菌生物量)植物输入:少量来自植物根系分泌物有机质转化:腐殖质结合态氨基糖(与铁铝氧化物共沉淀)实验方法气相色串联质谱01称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。02待水解液冷却至室温后,加入250μg肌醇。涡旋仪震荡30s混匀。取水解液于5mL离心管中,于8000rpm离心1min。取上清液1mL于50mL离心管中用氮气于吹干。用20mL纯水溶解残渣。用0.4mol/LKOH 0.01mol/LHCL调节pH至6.6~6.8。离心管以4000rpm离心10min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL左右,涡旋溶解管壁有机物后,以4000rpm离心10min,除盐。再将上清液转移到5mL衍生瓶中吹干。并加入100μg戊五醇1mL水,冻干。03 标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、0.5mg/mL氨基甘露糖,0.25mg/mL胞壁酸),50μg肌醇,100μg戊五醇,轻轻摇匀后,与样品衍生瓶一起冻干。04衍生:a) 向吹干的样品...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务