028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

日期: 2024-07-01
标签:
文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.

译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。

期刊:Soil Biology and Biochemistry

IF:9.7

发表日期:2024.8(网络首发2024.5)

第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)

一、背景

陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图1 微生物驱动的有机碳和无机碳周转关系示意图

二、科学问题

1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;

(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;

(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。


三、材料与方法

(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。

(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(表1)。

(3)设置样地并用5cm土钻取土,并将土壤分成不同粒径(图2)。

(4)测定指标:pH、SWC、STC、DOC、SOC、SIC、MBC、AG、BG、16s rRNA、ITS。

表1 不同地形基本特征

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性


文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图2 样地和采样示意图


四、结果

(1)坡向和坡位对土壤团聚体分布和稳定性有显著影响(p<0.05),ms的大粒团聚体(>2 mm)主要向(<0.25>2 mm)主要向2 ~ 0.053 mm粒径转移,这导致阳坡和阴坡的MWD由上至下逐渐减小,但均显著高于滨江(图3)

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图3青藏高原MS、WR和SS上、中、底位置土壤团聚体分布(a)和团聚体平均重径(b)


(2)土壤的生物和非生物性质随坡向、坡位和团聚体粒径的变化而变化(图4)。

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图4 青藏高原MS、WR和SS上部、中部和底部土壤团聚体的生物和非生物特性


(3)细菌多样性高于真菌多样性,对环境因素的敏感性较低。优势菌群的丰度分布不均,主要受坡位、坡向和团聚体粒径分数的影响。

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图5 弦线图显示青藏高原阳坡、阴坡和河滨的大小组分团聚体在门水平上的主要细菌(a)和真菌(c)的相对丰度。NMDS结果显示了土壤细菌(b)和真菌(d)微生物群落的变化


(4)根据相关性分析发现,团聚体中细菌和真菌收到土壤理化性质的显著影响,其中pH显著影响细菌和真菌的群落组成和群落多样性。

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图6 影响青藏高原MS、SS和WR不同大小组分细菌(a)和真菌(b)群落组成和多样性的土壤生物和非生物因子环境因素之间的相关性


(5)pH与STC、SOC、AG、BG、SWC和Chao1指数呈显著指数负相关;在MS、SS和WR不同位置的所有团聚体中,与SIC、DOC和Shannon指数呈指数正相关。由拟合方程可以看出,pH对酸性土壤(pH < 7)STC、SOC、AG、BG和Chao1的影响显著大于碱性土壤(pH > 7),而对SIC和DOC的影响则相反。

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图7 pH和其他环境因子的回归分析图


(6)pH通过调节团聚体内的酶活性和微生物群落,促进无机碳向有机碳的转化,从而扩大土壤“碳汇”的规模,减少二氧化碳的排放。

文献解读| 无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性

图8 pH调节下微生物驱动的无机碳和有机碳动态转化与土壤团聚体周转的协调示意图


五、结论

(1)小团聚体(主要为<0.053 mm)的微生物活性最低,而溶解有机碳(DOC)、SIC和pH值则相反。

(2)细菌多样性大于真菌多样性,对环境因素的敏感性较低,优势门丰度主要受坡度影响,团聚体大小对群落结构的影响分布不均。

(3)高寒山地的有机碳周转效率依次为向阳坡高寒草甸(MS)>河滨高寒湿地(WR)>阴坡高寒草甸(SS),粉砂+黏土组分>大团聚体>微团聚体。

(4)pH值是土壤团聚体中微生物驱动的有机-无机碳动力学的主要非生物调节因子。pH随粒径的增大抑制了酶活性,降低了细菌群落组成和多样性,然而真菌群落组成降低,真菌群落多样性增加,促进了MBC、DOC和SIC向SOC过渡。这导致土壤团聚体中储存的总碳增加,从而促进了土壤大团聚体结构及其稳定性。


更多相关检测信息搜栢晖生物了解更多。

  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 06 - 19
  • 点击次数: 0
    2025 - 06 - 13
    原文链接:https://doi.org/10.1038/s41467-025-60036-5 如有检测相关需求欢迎so栢晖生物了解更多~
  • 点击次数: 0
    2025 - 06 - 05
    根系分泌物的研究是理解土壤-植物-微生物互作的核心环节,是破解土壤“黑箱”的钥匙。对生态理论(如植物-微生物共进化)、应用实践(智能农业、生态修复)均具深远意义。01土壤生态系统的“隐形语言”根系分泌物是植物与土壤环境沟通的化学信号,包含有机酸、糖类、氨基酸、酚类、酶等数千种化合物。它们如同植物的“代谢指纹”,动态响应环境变化(如干旱、养分胁迫或病原体攻击),并调控周围土壤生物的活性。研究这些物质能揭示植物如何主动塑造其根际微环境,而非被动适应。02驱动土壤养分循环的关键引擎养分活化:例如,植物在缺磷时分泌柠檬酸、苹果酸等有机酸,溶解土壤中固定的磷酸盐;缺铁时分泌酚类化合物(如禾本科植物的麦根酸)螯合铁离子。碳分配策略:根系分泌物占植物光合产物的5%-40%,是土壤微生物的主要能源。其化学组成直接影响微生物介导的碳氮磷循环效率,进而决定土壤肥力。03超微生物群落的“指挥棒”选择性招募:植物通过分泌物招募互利菌群(如固氮根瘤菌、菌根真菌),或抑制病原菌(如分泌抗菌酚类)。例如,豆科植物分泌黄酮类物质诱导根瘤菌结瘤基因表达。群落结构调控:分泌物组成差异会导致根际微生物α/β多样性变化,影响生态功能(如抑病型微生物组的形成)。04应对全球变化的潜在杠杆气候适应性:高温或CO₂升高可能改变分泌物量与成分(如增加糖类分泌),进而反馈于土壤碳封存潜力。理解这一机制有助于预测生态系统碳平衡。污染修复:某些分泌物(如紫苏酮)能激活根际降解菌,加速石油烃、农药等污染物的分解,为植物-微生物联合修复提供策略。05农业可持续性的突破口精准施肥:解析作物品种的分泌物特征可指导微生物菌剂开发,减少化肥依赖(如利用磷solubilizing 细菌)。抗逆育种:筛选分泌物中关键抗逆物质(如干旱诱导的脱落酸类似物),可为抗性品种选育提供分子标记。连作障碍缓解:阐明分泌物积累导致的土传病原菌富集机制(如黄瓜...
  • 点击次数: 0
    2025 - 05 - 30
    在生态土壤研究中,土壤铁铝氧化物和铁结合态有机碳是两类不同的组分,它们在形成机制、生态功能及研究意义上存在显著差异。铁铝氧化物和铁结合态有机碳在有机碳固存中的双向作用:铁结合有机碳(OC-Fe)是MAOC的重要组成部分,通过形成Fe-有机复合物在SOC的积累和保存中起着至关重要的作用。Fe通过三种主要机制促进SOC的积累:促进土壤团聚体的形成、与溶解有机碳的吸附和共沉淀以及改变微生物活动。同样,Al可以吸附到活性表面位点或与土壤固相共沉淀,从而增强SOC的稳定性。因此, Fe- Al氧化物可以加速OC- Fe的积累并在SOC封存中发挥关键作用。编辑搜图以下是两者的主要区别: 1. 定义与组成 铁铝氧化物化学本质:主要是铁(Fe)和铝(Al)的氧化物、氢氧化物及其水合矿物,如赤铁矿(Fe₂O₃)、针铁矿(FeOOH)、三水铝石(Al(OH)₃)等。来源:由原生矿物风化或次生矿物形成,受土壤pH、氧化还原条件及气候影响。特点:无机矿物相,具有高比表面积和可变电荷,对磷、重金属等有强吸附能力。铁结合态有机碳化学本质:有机碳(如腐殖酸、多糖等)通过吸附、共沉淀或配位键与铁氧化物结合形成的复合体。来源:有机质与铁铝氧化物的相互作用,常见于厌氧-有氧交替环境(如湿地、水稻土)。特点:有机-无机复合体,是土壤碳库的重要稳定形式。 ------------- 2. 形成机制 铁铝氧化物通过化学风化(如硅酸盐矿物分解)或氧化还原过程(如Fe²⁺氧化为Fe³⁺)形成。受土壤pH和Eh(氧化还原电位)调控,酸性或厌氧条件促进溶解,中性/好氧条件促进沉淀。铁结合态有机碳吸附作用:有机碳通过静电或配体交换吸附在铁氧化物表面。共沉淀:有机质与铁离子共同沉淀形成混合相(如铁-有机胶体)。微团聚体保护:铁铝氧化物作为...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务