028-8525-3068
新闻动态 News
News 行业新闻

十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成来源

日期: 2025-01-09
标签:

文献解读

原名:Decadal application of mineral fertilizers alters the molecular composition and origins of organic matter in particulate and mineral-associated fractions

译名:十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成和来源

期刊:SBB

IF:9.8

发表时间:2023.07

第一作者:Zhichao Zou

摘要

背景:长期矿质施肥对土壤有机质(SOM)的数量、质量和稳定性的影响仍不明确。

方法:通过结合四种生物标志物(自由与结合态脂类、木质素酚和氨基糖),研究中国北方农田在10年矿质施肥下(400 kg N ha−1 yr−1, 120 kg P ha−1 yr−1 和 50 kg K ha−1 yr−1)的SOM的分子组成、分解和来源。我们关注于两个差异化的SOM组分:颗粒态有机质(POM)和矿质结合态有机质(MAOM)。

结果:尽管施肥对全土SOC的影响有限,但导致MAOM中SOC增加23%,并且改变了其组成和来源。施肥使POM中植物源的萜类化合物增加46%,MAOM中长链脂类(≥20)增加116%,但是降低了POM中54%的短链脂类(<20)。施肥使POM和MAOM中软木脂源脂类分别降低56%和30%,但使木质素来源酚类分别增加74%和31%,表明作物残体更偏好在POM中固存。施肥降低了两种组分中微生物残体对SOC的贡献。总之,矿质施肥矿质施肥会降低POM中某些可溶性组分(例如,短链脂类),导致MAOM中难分解分子的积累(例如,长链脂类,角质源脂类和木质素来源酚类)。

结论:矿质施肥通过改变温带农业生态系统中矿物-有机复合体的分子组成和固存,增加SOM的稳定性和持久性。

研究背景

SOM能够维持土壤肥力、促进土壤水分存留和有机碳(SOC)固存,对农业生态系统的功能的发挥至关重要。在典型的农田,大量矿质肥料的输入增加了作物生产力,导致大量的碳(C)通过残体、根系及其分泌物进入土壤,随后改变了SOM周转。然而,我们对SOC稳定和固存对营养施肥的响应方向和程度的基础理解仍然不明确。之前的研究报道了农业生态系统中施肥管理导致更高、中性以及甚至更低的SOC水平。在集约型农业中,矿质施肥使增加或维持作物产量的关键。养分介导的SOC积累主要与2方面有关,1)通过增加凋落物和根沉积物介导更高的植物输入;2)抑制微生物代谢和/或微生物生物量,并且改变了微生物群落结构。矿质施肥导致的SOC积累也可能被不同土壤组分的C损失或土壤C的生物降解所抵消,导致零积累,甚至负积累。此外,矿质肥料的输入可能通过植物输入、分配途径和分解,改变SOM形成和稳定,并且影响SOM的分子组成和来源。除了施肥对SOC库影响的差异化结果外,很少有研究关注矿质施肥对SOM质量的影响(比如,分子、不稳定性和来源)

研究SOC的分子组成有利于揭示SOM来源和分解途径,因此提高对SOM不稳定性和稳定性的评估。新兴的观点表明,SOM是一个逐级分解的有机化合物的连续体,具有不同阶段的生物地球化学降解过程。这种复杂的混合物(有机质)由一系列的生物分子组成,如多糖、脂质、木质素、角质、软木脂和氨基糖。生物标志物的方法已被证明是分析SOM的一个强大的工具。例如,氨基糖和木质素生物标志物被用于差异化的指示微生物和植物源生物分子。此外,自由基长链脂类(≥C20)和类固醇被认为主要是植物源,而短链脂类()和海藻糖主要是微生物源。结合脂质,如角质和软木脂,是具有植物特征的生物大分子,分别用于追踪来自叶和根的输入。然而,大量研究集中在自然生态系统中养分输入(大部分是N)的影响上,并且发现N输入能够改变这些SOM组分和来源。例如长期N肥增加了温带森林和草地的植物源脂类(例如,steroids(类固醇)、cutin(角质)、suberin(木栓质))和木质素酚。然而,不确定性仍然存在,因为某些组分(如微生物残留物)对施肥的反应不一致。据推测,这些不同的结果可能是由于肥料类型、添加率、持续时间、土壤类型、土壤特性、生态系统和气候区域的差异导致的。然而很少有研究探究农田土壤中,SOM的分子组成,来源和稳定性对矿质施肥的响应,这些尤为重要,因为考虑到更大的化肥输入,更高的扰动率,更低的SOC水平,并且越来越大的义务在土壤中储存更多的C以缓解气候变化

SOM通常可以被划分为POM和MAOM。这两个可操作组分在形成、稳定和功能上存在本质的区别。这些组分内的差异强调了我们需要分别量化和描述POM和MAOM。越来越多的证据表明,土壤和作物管理时间会改变SOM功能组分中数量和组成。

目前还没有研究的报道农田土壤中POM和MAOM组分中SOM分子组成和来源对长期矿质施肥的响应。在本研究中,我们结合了几个关键的分子水平分子标志技术,以阐明农田POM和MAOM功能组分的命运、分解和来源对十年矿质施肥的响应。我们假设:1)矿质施肥添加将增加SOM的数量和木质素来源酚类,而降低微生物残体(由于刺激了微生物残体的分解);2)养分介导SOM组成和来源的变化在POM和MAOM组分中存在差异,其中POM将富集植物源SOM,而MAOM将积累微生物源残体。

主要结果

1. 全土和SOC组分的SOC和TN

MAOM组分在颗粒分布中主导(总回收质量>60%),并且施肥导致MAOM质量增加14%(1a)。大部分SOC集中于MAOM组分(约90%),其中与对照相比,矿质施肥使MAOM组分中SOC增加25%。

十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成来源

图1 矿物施肥对POM和MAOM组分质量比例(a)和SOC的影响。

2. POM和MAOM组分中游离脂类化合物

对于POM组分,施肥导致短链N-烷烃和N-烷醇降低50%和57%,但使植物源类固醇(即菜油甾醇、豆甾醇和谷甾醇增加46.6%。施肥增加了MAOM组分中长链(≥C20)脂肪族脂质的浓度(正烷烃增加了93%,正烷醇增加了156%,正烷酸增加了161%),但减少了短链()正烷烃和正烷醇的浓度,分别减少了50%和57%(表1)。使用了几种分子指标来评估游离脂质的来源和降解状态(图S1)。总体而言,正烷烃的平均链长(ACLAlk)和正烷酸的平均链长(ACLFa)分别在26.4到27.7和16.6到16.9之间变化(图S1a和c)。与对照组相比,施肥处理在POM组分中的ACLAlk高于MAOM组分(图S1a;p < 0.01)。此外,施用矿物肥料增加了POM组分中的OEPAlk和EOPFa(图S1b和d;p < 0.001)。

3. POM和MAOM组分中的结合脂质

施用矿物肥料使POM组分中的栓皮质衍生脂质浓度降低了52%,MAOM组分中降低了30%(表1;p < 0.05),而施肥对POM和MAOM组分中的角质衍生成分没有影响。在POM组分中,角质和/或栓皮质衍生脂质(ΣS˅C;ΣS^C)在施肥处理下的相对含量低于对照组,而在MAOM组分中则没有这种差异(表1)。施用矿物肥料显著降低了POM组分中的栓皮质/角质比值(图S2a;p < 0.05)。POM组分中的ω-C18/ΣC18比值在施肥处理中高于对照处理(图S2b;p < 0.05)。POM组分中的ω-C16/ΣC16比值在施用矿物肥料后低于未施肥对照(图S2c)。此外,施肥导致POM组分中的Σmid/ΣS^C比值高于对照(图S2d)。

4. POM和MAOM组分中的木质素衍生酚

施用矿物肥料增加了POM和MAOM组分中特定和总的木质素衍生酚(图2;表1)。具体来说,施肥(与对照相比)处理使POM和MAOM组分中的总木质素衍生酚浓度分别增加了74%和31%(图2;表1)。木质素氧化比值,以(Ad/Al)V和(Ad/Al)S表示,在两种施肥处理之间相似(图S3)。然而,在特定处理中,POM组分的(Ad/Al)V值高于MAOM组分,而POM和MAOM组分之间的(Ad/Al)S比值则呈现出相反的趋势(图S3)。

十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成来源

图2 对照相比,矿质施肥对整体土壤、POM组分和MAOM组分的多种可提取生物标志物的影响

表1 POM和MAOM组分中SOM组分的浓度

十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成来源

5. POM和MAOM组分中中氨基糖和微生物残体

对照矿质施肥改变了两种组分中某特定氨基糖浓度(比如,葡萄糖胺、甘露糖胺、半乳糖胺和胞壁酸)(图2;表1)。施肥使一些氨基糖(除甘露糖胺)和总氨基糖降低31-37%,但是这些变化在MAOM组分中不显著。我们也发现两种组分中真菌和细菌MRC变化(图3)。具体来讲,矿质施肥使POM中细菌MRC降低37%,然而MAOM组分中施肥未导致MRC显著差异。施肥降低了POM中细菌MRC及其对SOC的贡献(图3a和d),并且MAOM组分中真菌MRC和总MRC对SOC的贡献与之趋势一致。在所有处理中,POM组分具有比MAOM更高的细菌MRC、真菌MRC和总MRC占SOC的比例。此外,矿质施肥导致MAOM中细菌MRC高于POM,即使施肥处理和CK间差异不显著。施肥降低了POM中细菌MRC/真菌MRC(B/F),而MAOM中这一差异不显著,此外这一比值在POM中显著高于MAOM。

十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成来源

图3 矿质施肥影响的细菌、真菌及其微生物残体碳(MRC)对POM和MAOM组分中SOC积累的贡献

6. POM和MAOM组分中SOM化合物和标志物

B/F、(Ad/Al)V、ω-C18/ΣC18和 ACLFa 沿PC1有更高的负载荷得分,而 EOPFa、ACLFa、ω-C16/ΣC16、ω-C18/ΣC18和角质/栓皮质有更高的正载荷得分。POM中对照处理在ω-C16/ΣC16和ω-C18/ΣC18上存在差异,而施肥处理在Σmid/ΣS^C 和 ACLAlk存在显著差异。相反,在MAOM组分中,对照处理由AS、细菌MRC和总结合脂类改变,而施肥处理由VSC、总自由脂类、EOPFa和 OEPAlk改变。

十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成来源

图4 化合物和与降解相关指标之间的主成分分析(PCA)

十年施肥后,POM中植物源碳对SOC的贡献从38%增加到52%,在MAOM中从17%增加到21%,而微生物源碳对SOC的贡献在POM中从54%下降到38%,MAOM从11%-9%(图5)。

十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成来源

图5 植物(定量为木质素)、细菌和真菌源碳对SOC组分的贡献。

结论

1. 十年的矿质施肥改变了SOM的分子组成,而非数量。

2. 矿质施肥通过增加稳定性组分,从而提高了MAOM相关碳库,这有利于提高温带农业生态系统中SOC固存及其持久性。

更多土壤、植物、水气体检测so栢晖生物了解更多

土壤、植物酶活检测、氨基糖、PLFA及其同位素、磷组分、木质素酚、CUE、有机氮组分、有机酸、氨基酸、微生物量碳氮磷、同位素等、苯多羧酸、红外光谱、微生物多样性等指标的测定


  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 11 - 24
    土壤是一个复杂的三相(固、液、气)多孔介质,其物理结构(如团聚体、孔隙度)是一切生命活动的基础。微塑料的存在会改变孔隙结构、影响水分运移、影响气体交换等等,它可以吸附环境中的重金属、持久性有机污染物等,成为这些有毒物质的“载体”,改变它们在土壤中的分布和生物有效性,加剧复合污染。微塑料的测定方法主要有上述提到的光谱法、显微分析法和热裂解法等,如下是热裂解测定方法介绍。BAIHUI微塑料定性定量测定分析可测定12种主要微塑料!聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、丙烯腈-丁二烯-苯乙烯树脂(ABS)、丁苯橡胶(SBR)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚氯乙烯(PVC)、聚氨酯(PU:MDI型)、聚对苯二甲酸乙二醇酯(PET)、尼龙6(N6)、尼龙66(N66)01微塑料测定流程方法简述:称取过2 mm筛的风干土壤5 g于250 mL烧杯中,加入50 mL饱和氯化钠溶液,磁力搅拌30 min。静置3 h,悬浮上清液倒入250 mL烧杯。改用50 mL ZnCl2(密度约1.6 g/cm3)浮选一次,磁力搅拌30 min,静置3 h,上清液倒入前述250 mL烧杯。将250 mL烧杯中液体用不锈钢滤膜抽滤,收集滤膜,加30 mL过氧化氢,超声10 min, 60 ℃加热24 h。收集溶液,用不锈钢滤滤膜抽滤,收集滤膜,晾干备用。将滤膜放入烧杯,加有机溶剂,超声10 min,溶剂浓缩至1 mL。取50 μL至80 μL裂解样品杯,通风橱内挥干,加CaCO3稀释剂2 mg,少量玻璃棉覆盖,待测。校准曲线绘制称取以CaCO3稀释剂为基质的微塑料标准物质(12种微塑料),0.1、0.5、1.0、2.0、4.0 mg,加入至裂解样品杯中,少量玻璃棉覆盖,配制成标准系列。02测定结果展示03分析软件-F-Sear...
  • 点击次数: 0
    2025 - 11 - 05
  • 点击次数: 0
    2025 - 10 - 10
    13C固体核磁共振方法简述为了提高固体核磁共振测定的精确度,土壤样品在进行核磁共振分析前先用氢氟酸(HF)进行预处理。预处理方法如下:称量8克土壤样品于100mL塑料离心管中,加50mLHF(体积分数10%)溶液,摇床上振荡1h(25℃,200r/min),离心机上3800 r/min离心5min,弃去上清液,残余物继续用HF溶液处理。共重复处理8次,摇床时间依次是:第1-4次1h,第5-7次12h,最后1次24h。处理过后的残余物用蒸馏水清洗后以除去其中的HF溶液,方法如下:加50mL蒸馏水,振荡10min,离心5min(3800r/min),去掉上清液,整个过程重复4次。残余物在40℃的烘箱中烘干,过60目筛后置于密室袋中,备NMR上机测定。数据示例点击放大查看红外光谱方法简述土壤样品的光谱特征使用傅立叶变换红外吸收光谱进行分析。将干燥的样品与干燥的KBr(样品:KBr = 1:80的比例)在玛瑙研钵中汇合均匀并研磨至粉末状(粒度 < 2 μm),压成透明薄片。用傅立叶变换红外光谱仪(Spectrum 100; PerkinElmer, MA, USA)扫描测定并记录其光谱。光谱数据进一步用Omnic 8.3软件(Thermo Nicolet Corporation, USA)分析。根据前人的研究,我们选择了4个波峰区域来分析土壤C官能团特征并计算峰面积比:alkyl-C(2985 - 2820 cm-1);aromatic C=C(1800 - 1525 cm-1); O-alkyl-C(1185 - 915 cm-1) and aromatic CH(855 - 740 cm-1)(Pengerud et al., 2013)。基于峰面积比,我们计算了土壤SOM的疏水性指数(HI,alkyl-C/SOC)和芳香度指数(AI,alkyl-C/O-alkyl-...
  • 点击次数: 0
    2025 - 09 - 29
    BAIHUI文献解读原名:Heavy metal contamination threats carbon sequestration of paddy soils with an attenuated microbial anabolism.译名:重金属污染威胁水稻土壤的碳封存,微生物分解代谢减弱。期刊:GeodermaIF:6.6发表日期:2025.8第一作者:熊丽 江西省农业科学院土壤与肥料及资源环境研究所(熊丽课题组)01背景耕地中的土壤有机碳(SOC)不仅是土壤肥力和生产力的基础,更在缓解气候变化中发挥着重要作用——仅表层1米的土壤中就储存着全球SOC总量的近10%。SOC的生态功能主要取决于其循环转化与长期存留能力,而这些过程极易受到重金属污染等环境压力因素的显著影响。近百年来人类活动的密集开发,使农田土壤重金属污染日益严重,已成为威胁土壤健康和粮食安全的全球性问题。作为土壤碳循环的主要调控者, 微生物如同“针眼”般精准调控着有机质碳的转化过程,且对重金属具有高度敏感性。因此,重金属污染对微生物介导SOC转化的影响正引发学界越来越多的关注。图1:研究区及沿县岔河13个采样点位置示意图02科学问题(1)重金属污染会降低微生物可利用碳元素(CUE)并加速生物量周转;(2)微生物合成代谢能力减弱将显著影响污染稻田土壤中有机碳的变化。03材料与方法(1)本次实地考察在自1934年开采至2020年关闭的小龙钨矿周边展开。属亚热带季风气候区,年均气温18.6℃,年均降水量1726毫米。 (2)水稻种植是该地区最主要的农业类型,采用典型的早稻-晚稻轮作制度。 (3)在河流上下游13个采样点采集土壤样本 (图1),每个采样点选取三块相邻的稻田作为三重复样本。每块稻田内设置五个2×2米样方,每个样方从表层(0-20厘米)随机采集五个直径2.5厘米的土...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务