028-8525-3068
新闻动态 News
News 公司动态
原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体...
发布时间: 2024 - 07 - 01
浏览次数:0
作者:
发布时间: 2022 - 02 - 11
点击次数: 0
超氧化物歧化酶(SOD)是生物体系中抗氧化酶系的重要组成成员,广泛分布在微生物、植物和动物体内。其是在上个世纪末才被发现,可以说是生物医学研究史上的一项重大成果,于人类生命研究具有极其重要的意义。今天我们就给大家分享一下如何通过比色法测定植物酶活SOD。图片来源于网络一、试剂所有试剂除注明者外,均为分析纯。1.1 磷酸缓冲液:A液:0.2M的KH2PO4溶液 分析纯KH2PO4  27.216克,用蒸馏水定容至1000毫升。 B液:0.2M的K2HPO4溶液 分析纯K2HPO4•3H2O 45.644克,用蒸馏水定容至1000毫升。或 A液:0.2M的NaH2PO4溶液 分析纯NaH2PO4•2H2O  31.21克,用蒸馏水定容至1000毫升。 B液:0.2M的Na2HPO4溶液  分析纯Na2HPO4•12H2O 71.64克,用蒸馏水定容至1000毫升。1.2 母液的配制: (1)0.5M 磷酸缓冲液(PH=7.8):A液21.25ml+B液228.25ml定容至1000ml; (2)130mM Met(甲硫氨酸):取1.9399克Met 用磷酸缓冲液(PH=7.8)定容至100ml; (3)750μM四氮唑蓝(NBT):取0.06133gNBT用磷酸缓冲液(PH=7.8)定容至100ml(避光保存); (4)100μM EDTA-Na2:取0.0372g EDTA-Na2用磷酸缓冲液(PH=7.8)定容至1000ml; (5)20μM FD (核黄素):0.00753gFD用磷酸缓冲液(PH=7.8)定容至1000ml(现配现用)。 1.3 SOD反应液: 磷酸缓冲液(PH=7.8):Met:NBT:EDTA-Na2:核黄素(FD):H2O的比例为15:3:3:3:3:2.5,按母液顺序配制。 二、主要仪器万分之一分析天平、紫外分光光度计、医用离心机、研钵三、试样的制备取新鲜样本剪碎充分混匀后,装入样本瓶放入4℃冷藏备用。四、分析步骤4.1 酶液的制备: 称取鲜样0.5g放入研钵中,加5毫升PH=7.8的磷酸缓冲液,冰浴研磨,匀浆倒入离心管中,冷冻离心20分钟(10000×g),上清液(酶液)倒入试管中,置于0~4℃下保存待用。 4.2 SOD的测定 取型号相同的试管,吸取20ul的酶液,加入3ml反应液,4000Lux照光(多用为环形日光灯的光照培养箱)30分钟(尽量做到照光情况一致)4.3 空白与对照的制备同时取四支试管,三支做对照(CK),一支做空白(不加酶液,以缓冲液代替);空白置暗处,对照(CK)与酶液同至于4000Lux条件下照光3...
作者:
发布时间: 2022 - 02 - 08
点击次数: 0
原名:Depth-dependent drivers of soil microbial necromass carbon across Tibetan alpine grasslands译名:青藏高原高寒草地土壤微生物残体碳的驱动者取决于土壤深度期刊:Global Change Biology2020年影响因子: 10.863在线发表时间:2021.11.02第一作者:Mei He通讯作者:Yuanhe Yang第一单位:中国科学院植物研究所植被与环境变化国家重点实验室研究背景微生物坏死碳(C)被认为是持久性土壤碳库的重要贡献者。然而,目前还缺乏对不同土层特别是高山生态系统微生物坏死量C的大规模系统观测。此外,植物碳输入和矿物性质等生物和非生物变量在调节微生物坏死量C方面的相对重要性是否会随土壤深度而改变尚不清楚。研究方案沿着青藏高原约2200公里的高寒草地样带进行了大规模采样,共采集了36个地点的表土和底土样品(Figure 1a),并根据氨基糖估算了微生物残体C的含量。为了探索微生物残体C的关键决定因素,检测了各种生物和非生物因素,包括植物碳输入、微生物性质(如微生物生物量C (MBC)、总磷脂脂肪酸(PLFAs))、矿物保护(粘土含量、铁/铝氧化物和交换性钙)和土壤理化性质(如:土壤温度、有机碳与全氮比)。进一步采用方差分解分析(VPA)和结构方程模型(SEM)定量分析了这些因素对土壤微生物残体C空间变化的相对贡献。主要研究结果在36个采样点,表层和深层土壤的微生物残体C分别为0.55 ~ 34.78和0.40 ~ 15.19 mg g-1 dry soil,平均值分别为9.57, 1.72和3.29, 0.57 mg g-1 dry soil. 高寒草原、高寒草甸以及整个高寒草地的微生物残体C均随土壤深度的增加而显著降低(Figure 1 c)。与总微生物残体C一致,真菌和细菌残体C在表土中显著高于底土(Figure S1)。而在有机碳归一化条件下,两种草地类型的土壤微生物残体C含量均无显著差异(高寒草原:P = 0.47;高寒草甸:P = 0.40)或整个高寒草甸(P = 0.28,Figure S2)。有趣的是,高寒草地微生物残体C对土壤有机碳的贡献显著低于全球草地 (表土:45.4% vs 58.1%;底土:41.7% vs. 53.7%; Figure S3)。微生物残体C的主要决定因素与土壤深度有关。在表土中,微生物残体C随植物C输入量、MBC、总PLFAs、真菌PLFAs和细菌PLFAs的增加而显著增加(Fig...
作者:
发布时间: 2022 - 01 - 12
点击次数: 0
摘要:微生物残体在土壤有机碳(SOC)积累中起重要作用。然而,从凋落物到矿物土壤,微生物残体碳(C)浓度及其对有机碳固存的贡献,以及影响残体碳积累的因素尚不清楚。为了解决该问题,我们在黄土高原栎林凋落物-矿物土壤剖面上开展了微生物残体碳的组成分布特征及其对SOC固存贡献的研究。本研究基于微生物细胞壁的生物标志物氨基糖来估计微生物残体C浓度。结果表明,从Oi1层到Oa层,微生物残体C增加,而从Ah1层到AB层微生物残体C减少。微生物残体C在凋落物-矿物土壤界面的累积量最高(Oa层总微生物残体量为39.5 Mg ha−1, Ah1为22.8 Mg ha−1)。从Oi1到Ah2,总微生物残体C对SOC的贡献增加。其中,总微生物残体C平均分别占Ah1、Ah2和AB层栎林矿质层SOC的40.7%、47.7%和37.0%。从凋落物到矿质土壤,真菌与细菌残体C的比值逐渐降低,说明相对较高的细菌残体C在较深层凋落物和较上层矿质土壤的积累更多。真菌和细菌残体C随活性有机C, 氮(N)和活性无机磷(P)的增加而增加,说明可溶性营养物质的增加导致微生物生物量的增加,进而导致更高的微生物残体C积累。综上,我们的研究结果表明,微生物对C或N的需求影响了可溶性营养物质的数量,并进一步导致微生物残体C分解或积累的变化。关键词:氨基糖,土壤有机碳固存,凋落物-矿物土壤剖面,化学计量学,栎林,黄土高原研究背景:越来越多的研究证据表明微生物残体是SOC的一个主要组成部分,在很多研究案例中微生物残体占SOC的50%以上。以往研究案例表明,在三年的凋落物分解实验中,只有不到三分之一的植物有机组分进入土壤,通过植物残体的物理转移和微生物残体C的续埋效应增加了SOC积累。然而,森林凋落物-土壤剖面中微生物残体的变化仍不清楚。该领域的研究能帮助我们更好地理解在野外凋落物分解过程中,微生物残体C是如何从枯死叶片进入土壤的。环境条件和微生物营养需求对残体再循环有强烈影响。环境中C, N的高有效性促进了微生物残留物的积累。例如,营养丰富的环境中,微生物群落采用高产策略促进生长,从而加速残体积累。相反,在养分限制的条件下,采用营养获取策略的微生物群落限制残留物的产生和积累。因此,微生物对C, N的需求和环境C, N有效性可能会影响微生物残留物的积累和分解,因为微生物C/N/P化学计量学取决于土壤或凋落物中的养分有效性。相比矿质土壤或凋落物的总养分,土壤或凋落物中的活性养分(如活性C、N和P)及其C/N/P比更多变,但更接近土壤微生物的化学计量学。微生物残体是一种重要的N资源,有助于缓解过量活性C输入下的微生物N的缺...
作者:
发布时间: 2022 - 01 - 04
点击次数: 0
文献 | 解读原名:Mobilization of soil phosphate after 8 years of warming is linked to plant phosphorus-acquisition strategies in an alpine meadow on the Qinghai-Tibetan Plateau译名:气候变暖八年后青藏高原高寒草甸土壤磷素活化与植物获取磷素策略的关系作者:Jun Zhou,et al.期刊:Global change biology发表时间:2021.09.28影响因子:10.8631关键词高寒草原;全球变暖;低分子量有机酸;菌根;磷溶解细菌;植物养分获取策略;P形态。2研究主题和背景(1)背景:磷是高寒草地生态系统生产力的限制性因素,高寒草地生态系统对全球变暖十分敏感。相对于碳、氮循环而言,关于高寒草地生态系统变暖后植物有效磷的主要来源的认识极其有限。(2)主题:青藏高原高寒草甸(海拔4635 m) 8年增温试验。地上生物量和地下生物量中磷的浓度显著增加,表明增温条件下植物对磷的活化和同化作用增强。3科学问题或科学假说(1)科学问题:全球变暖背景下高寒草甸植物P获取策略与土壤磷活化之间存在着怎样的协同关系?(2)科学假说:A. 钙结合态磷是高寒草甸碱性土壤长期增温后植物有效磷的主要来源。B. 钙结合态磷的活化与气候变暖下高效的植物P获取策略有关,如释放大量羧酸。C. 钙结合态磷的活化也与植物N获取的策略有关。4材料与方法本研究是在北麓河冻土观测站,采用随机区组实验设计,五个区组,每个区组都有成对的控制和升温处理。A. 样地与土壤样品采集与保存该实验于2017年9月28日和2018年6月27日开展,用土钻分别在0 - 10,10 - 20,20 - 30和30 - 50cm深度采集土壤样品(直径5厘米);ANPP;盖度,Mn、C、N、P的浓度。采用生长核心法对地下净初级生产力(BNPP)进行测量。B. DNA提取,PCR和DNA测序使用PowerSoil从0.5 g土壤样品中提取DNA,用纳米滴分光光度计测定提取的DNA的质量和数量。采用16S rRNA和Hiseq 2500 PE 100测序。C. 土壤和植物分析土壤样品过2mm筛;pH;土壤有机C、N;氨态氮、硝态氮;MBP:氯仿熏蒸,使用0.5mol碳酸氢铵提取液浸提;酸性和碱性磷酸酶活性:对硝基苯酚磷酸盐法;TP;P组分。D.数据分析原始FASTQ是环状共识测序,经过筛选、聚类和解复用,在生物标记平台(htt...
作者:
发布时间: 2021 - 12 - 31
点击次数: 0
速效钾是土壤中可被植物吸收利用的组分,具有促进植物淀粉和糖分合成、增加油脂和蛋白质含量、增强作物抗逆性等重要作用。今天栢晖小编整理了如何通过醋酸铵—火焰光度计法来测定土壤中的速效钾~一、试剂(1)中性1.0mol/L NH4OAc溶液:称77.09 g NH4OAc溶于近1升水中,用稀HOAc或NH4OH调节至pH7.0,用水定容至1升。(2)K标准溶液:称取0.1907 g KCLmol/L NH4OAc溶液中,完全溶解后用1mol/L NH4OAc溶液定容至1升,即为含100 mg/L K的NH4OAc溶液。用时分别吸取此100mg/L K标准液0,2,5,10,20,40 ml放入100 ml容量瓶中,用1mol/L NH4OAc定容,即得0,2,5,10,20,40 mg/L K标准系列溶液。二、主要仪器1/1000天平、振荡机、火焰光度计、三角瓶(250ml,100ml)、漏斗(60ml)、滤纸、坐标纸、角匙、吸耳球、移液管(50ml)三、试样的制备取风干的实验室待测样品充分混匀后,取待测样品充分混匀后,按四分法缩减至 100g,粉碎,然后全部通过18目孔径筛,装入样品袋备用。四、分析步骤称取风干土样(1mm孔径)5.00 g于150ml三角瓶中,加1mol/L NH4OAc溶液50.0ml(土液比为1:10),用橡皮塞塞紧,在20—25℃下振荡30分钟用干滤纸过滤,滤液与钾标准系列溶液一起在火焰光度计上进行测定,在方格纸上绘制成曲线,根据待测液的读数值查出相对应的mg/L数,并计算出土壤中速效钾的含量。五、结果计算式中:C—待测液浓度mg/L;m—风干土重;V—加入浸提剂毫升数;
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务